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Abstract

Quantum entanglement, which is a pure-quantum phenomenon that describes the distance-
free interaction between quantum systems and does not have a corresponding classical
theory, is an era-breaking phenomenon that even won the Nobel Physics Prize. Even if
quantum entanglement has been observed and verified experimentally, the mathematical
foundation for the description of various kinds of multipartite entanglement is still in-
credibly difficult. Algebraic geometry tools, such as projective geometry and varieties,
have been applied to study this mysterious phenomenon and found that there is a useful
mathematical description. We discuss some useful algebraic geometry tools and theo-
rems that can describe quantum entanglement and how they be applied to some quantum
entanglement systems.
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1 Variety

1.1 Segre Variety

The Segre embedding is a significant concept in projective geometry that allows us to embed
the product of two projective spaces into a higher-dimensional projective space. It is an
example of a geometric construction that reflects the combinatorial nature of tensor products
in algebraic geometry.

Definition 1 (Segre embedding). The Segre embedding is an injective morphism defined as
follows:

Σ : Pd1´1
k ˆ Pd2´1

k ãÑ Pd1d2´1
k , (1.1)

which takes a pair of points pras, rbsq P Pd1´1
k ˆ Pd2´1

k to their products:

pra0 : ¨ ¨ ¨ : ad1´1s, rb0 : ¨ ¨ ¨ : bd2´1sq ÞÑ ra0b0 : a0b1 : ¨ ¨ ¨ : ad1´1bd2´1s , (1.2)

where the notation refers to homogeneous coordinates, and the aibj are ordered in lexicograph-
ical order. The map is well-defined in terms of the projective coordinates, and the resulting
set of points forms a variety within the higher-dimensional projective space Pd1d2´1

k .

Definition 2 (Segre variety). The image of the Segre embedding is a variety, called the Segre
variety.

Remark 1. In linear algebra, for given vector spaces U and V over the same field K, there
is a natural bilinear map:

φ : U ˆ V Ñ U b V, pu, vq ÞÑ ub v . (1.3)

It is easy to see that for u P U , v P V , and any nonzero c P K, we have:

φpu, vq “ ub v “ cub c´1v “ φpcu, c´1vq . (1.4)

since pu, vq ‰ pcu, c´1vq in general, φ is not injective in general.
However, considering the underlying projective spaces PpUq and PpV q, this map becomes

an injective morphism of varieties:

PpUq ˆ PpV q Ñ PpU b V q, prus, rvsq ÞÑ rub vs . (1.5)

This can be easily extended to the tensor product of n spaces:

PpV1q ˆ ¨ ¨ ¨ ˆ PpVnq Ñ P

˜

n
â

i“1

Vi

¸

, prv1s, ¨ ¨ ¨ , rvnsq ÞÑ rv1 b ¨ ¨ ¨ b vns . (1.6)

Remark 1 shows that the projective map induced by the tensor product is injective, and
the image of this map is the Segre variety, a well-defined variety in the projective space
PpU b V q. Hence, PpV1q ˆ ¨ ¨ ¨ ˆ PpVnq can be considered as a subvariety in PpU b V q.
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1.2 Veronese Variety

Since we have discussed that the Segre varieties can be considered as the tensor product of
two projective spaces. We can consider the symmetric and antisymmetric tensor products as
well. Hence, there are still two kinds of varieties that can be considered as the extension of
the Segre variety. The first one is called Veronese variety.

Definition 3 (Veronese embedding). The degree n Veronese embedding

Ω : Pd
k ãÑ Pm

k , (1.7)

is an injective morphism defined by:

ra0 : ¨ ¨ ¨ : ads ÞÑ rf0pa0, ¨ ¨ ¨ , anq : ¨ ¨ ¨ : fmpa0, ¨ ¨ ¨ , anqs , (1.8)

where fi, i “ 0 ¨ ¨ ¨ ,m are all of the d-variate degree-n monomials.

Definition 4 (Veronese variety). The image of the Veronese embedding is a variety, called
the Veronese variety.

Remark 2. As the discussion in remark 1. By considering the underlying projective space
PpV q, this map becomes an injective morphism of varieties:

PpV q Ñ PpV d V q, rvs ÞÑ rv d vs . (1.9)

Definitely, as the tensor product case, we can consider the symmetric tensor product for more
spaces as well:

PpV q Ñ PpSymm V q, rvs ÞÑ rvdms . (1.10)

Similar to the tensor product case discussed in remark 1. Since the degree n Veronese
embedding is injective, we may consider PpV q as a subvariety of PpSymm V q.

1.3 Grassmann Variety

Now we can consider the antisymmetric tensor products. This is called Grassmann variety.
Similar to previous ones, we define an embedding first.

Definition 5 (Plucker embedding). Let V be a finite-dimensional vector space over k and
denote the Grassmannian by Gpd, V q. The degree d Plucker embedding

Gpd, V q ãÑ PpdimV
d q´1

k , (1.11)

is an injective morphism defined by:

W ÞÑ rw1 ^ ¨ ¨ ¨ ^ wds, where tw1, ¨ ¨ ¨ , wnu is a basis for W Ď V . (1.12)

Definition 6 (Grassmann variety). The image of the Plucker embedding is a variety, called
the Grassmann variety.
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Remark 3. As the discussion in remark 1. By considering the underlying Grassmannian
Gpd, V q, this map becomes an injective morphism of varieties:

Gpd, V q Ñ P
´

ľd
V

¯

,

W ÞÑ rw1 ^ ¨ ¨ ¨ ^ wds, where tw1, ¨ ¨ ¨ , wdu is a basis for W Ď V . (1.13)

Similarly, since the Plucker embedding is injective, the abstract Grassmannian can be

considered as a subvariety of P
´

ŹdV
¯

and gives another way for constructing the Grass-

mannian.

1.4 Secant and Tangent Varieties

Just like we have secants and tangents in differential geometry, we also want to extend the
notions of secants and tangents to algebraic geometry.

1.4.1 Secant Variety

In algebraic geometry, a secant variety is a construction that extends the notion of ”linear
span” to a collection of points on a projective variety. It is particularly important in the
classification of quantum entanglement because it describes states that can be expressed
as superpositions of separable states. We start our discussion from the projective lines in
projective geometry.

Definition 7 (Projective line). Let A “ ra0 : ¨ ¨ ¨ : ans and B “ rb0 : ¨ ¨ ¨ : bns P Pn be two
distinct points in Pn, they correspond to two vectors a “ pa0, . . . , anq and b “ pb0, . . . , bnq P

kn`1, which span a plane Λ Ă kn`1, whose vectors are of the form ua ` vb with u, v P k.
The corresponding line AB “ PpΛq Ă Pn is:

PpΛq “ trua0 ` vb0 : ¨ ¨ ¨ : uan ` vbns | u, v P k, not both zerou . (1.14)

Example 1.1. The projective line pq joining p “ r1 : 0 : 0 : 0s and q “ ra : b : c : ds has
points with coordinates:

ru` va : vb : vc : vds . (1.15)

Definition 8. (Secant variety)
Let projective varieties X and Y be subvarieties of a projective variety. The joining of X and
Y is given by the Zariski closure, of the lines from one to the other,

JpX,Y q “
ď

xPX,yPY

xy (1.16)

where xy is the projective line that includes both x and y called a chord or a secant line. If
X “ Y , then the variety is called a secant variety of X and denoted by σpXq, that is,

σpXq “ JpX,Xq “
ď

x,yPX

xy . (1.17)

Now we want to extend the notion to multiple-point cases that pass through k points of
X.
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Definition 9. Let X Ă PN be a projective variety. The k´secant variety of X, denoted
σkpXq, is the Zariski closure of the union of all projective linear spaces spanned by k ` 1
points on X. In other words, σkpXq consists of all points in PN that lie on secant k-planes
of X:

σkpXq “
ď

p0,...,pkPX

xp0, . . . , pky , (1.18)

where xp0, . . . , pky denotes the projective span of the points p0, . . . , pk.

Theorem 1.1. If the projective variety X Ď Ppkdq is non-degenerate, i.e., it is not contained
in a linear subspace of Ppkdq, there is a sequence of inclusions given by:

X Ď σpXq Ď σ3pXq Ď ¨ ¨ ¨ Ď σN pXq “ Ppkdq , (1.19)

where N is the smallest integer such that the N th secant variety fills the ambient space.

Remark 4. Due to the sequence given in the theorem 1.1, the variety σpXq is indexed as
σ2pXq, and σ1pXq is defined as X. So the sequence in the theorem 1.1 becomes:

X “ σ1pXq Ď σ2pXq Ď ¨ ¨ ¨ Ď σN pXq “ Ppkdq , (1.20)

With theorem 1.1, we can naturally define another important variety.

Definition 10. Let σkpXq and σk´1pXq be varieties in the inclusion sequence:

X “ σ1pXq Ď σ2pXq Ď ¨ ¨ ¨ Ď σN pXq “ Ppkdq , (1.21)

then the proper k´secant variety of X, denoted by ςkpXq is:

ςk “ σkpXqzσk´1pXq . (1.22)

In the context of quantum entanglement, secant varieties of the Segre variety play a central
role. The Segre variety X represents separable states in multipartite quantum systems. The
k-th secant variety σkpXq corresponds to states that can be expressed as superpositions of k`1
separable states. For example, in a bipartite system, σ1pXq includes states of Schmidt rank at
most 2, while higher k-secant varieties describe states with increasing levels of entanglement
complexity. Thus, secant varieties provide a natural geometric framework for classifying
entanglement in quantum systems. We will discuss more details about it in the following
sections.

1.4.2 Tangent Star Variety

At a smooth point, it is natural to define the tangent space. However, in algebraic geometry,
when we include the singular point, there are several different definitions of tangent space.
We discuss the most useful one in quantum mechanics-the tangent star.

Definition 11 ((Relative) Tangent Star). Let Y Ď X Ď Pn be projective varieties, and let
p P Y . Let txiu

8
i“1 and tyiu

8
i“1 be sequences having the limit:

lim
iÑ8

xi “ lim
iÑ8

yi “ p . (1.23)
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The relative tangent star at the point p is the union of all limit lines of sequences xi and
yi and denoted by T ˚

p pX,Y q. That is to say:

T ˚
p pX,Y q “ lim

iÑ8
xiyi Ď Pn , (1.24)

the lim here represents the union of all possible limits and differs from the definition of limits
of functions. When Y “ X, then T ˚

p pX,Xq is called tangent star of X at p and denoted by
T ˚
p pXq.

The tangent star is a geometric concept closely related to the study of tangent spaces to a
variety but involves the collection of all tangent lines to the variety through a given point. It
is particularly useful when analyzing the local geometric structure of a variety near a point.

Example 1.2. Let L1 and L2 be two lines in P2
R intersecting at a point p that are not contained

in each other. Let X “ L1
Ť

L2 Ď P2
R. Then the tangent star of X at point p is:

T ˚
p pXq “ SpantLi, Lju Ď Pn

R . (1.25)

The tangent variety of a given algebraic variety is a construction that captures information
about the tangents of the variety. It is defined as the union of all tangent spaces to the variety
at its smooth points. Tangent varieties are particularly useful in studying the geometry of a
variety and its embedding in a projective or affine space.

Definition 12 ((Relative) tangent star variety). Let Y Ď X Ď Pn be projective varieties.
The relative tangent star variety of X and Y , usually denoted by TpX,Y q is defined as:

TpX,Y q “
ď

pPY

T ˚
p pX,Y q . (1.26)

When X “ Y , then TpX,Xq is called tangent variety of X and denoted by τpXq.

As secant varieties, we also want to extend tangent variety to multiple-point cases that
pass through k points of X.

Definition 13. The k´tangent variety is defined as the relative tangent star variety of
τk´1pXq and X and is denoted by τkpXq. That is to say:

τkpXq “ Tpτk´1pXq, Xq . (1.27)

Remark 5. Due to the sequence given in remark 4, we define τpXq “ τ2pXq and τ1pXq “ X.

Remark 6. From now on, we call the tangent star variety tangent variety for simplicity.

2 Quantum Mechanics

2.1 Postulates in Quantum Mechanics

Quantum mechanics is a theory that differs from classical mechanics in that Newton’s laws
break the framework. To reformulate the physics in quantum mechanics, physicists proposed
several quantum mechanics postulates, which are experimentally verified but still not strictly
”proved” so far, to explain the phenomena that classical theory cannot explain.
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2.1.1 Quantum States

From basic mechanics knowledge, we know that we need two quantities, the position x and
momentum p, and the pair px, pq which is called the state, to describe a mechanical system.
From these two quantities and three Newton’s laws, we can describe the evolution of states
for a so-called mechanical system.

This description needed to be changed to accommodate experimental results. For example,
in Einstein’s space-time deformation and geodesic motion, we describe the state by a so-called
Lorentz tensor gµν . In classical field theory, we use electric field, magnetic field, etc., to
describe the states.

Since the most fundamental notion in a physical system is the state of the system, the
first postulate in quantum mechanics, the most fundamental postulate in quantum mechanics,
provides us with a description of quantum states.

Postulate 1 (Quantum state postulate). The quantum states of an isolated physical system
are represented, at a fixed time by a vector |ψy in a topologically separable complex Hilbert
space, usually denoted by H and called (quantum) Hilbert space. The inner product of two
vectors |ψy , |φy in the Hilbert space is denoted by xψ|φy.

Remark 7. Notice that C |ψy, C ‰ 0, and |ψy represent the same physical state. However,
C “ |C|eiθ does not imply the phase has physical meaning; see more details on quantum
dynamics. However since we only discuss the stationary quantum mechanics in this note, we
will not discuss this deeper notion here.

From this postulate, although we can describe a quantum state by a vector. One may still
be confused with what the Hilbert space of a quantum system looks like, we will discuss this
problem soon.

The postulate only provides us with a way to describe the isolated systems, that is, the
systems without any interaction with others. Another postulate regarding the quantum states
provides us with a way to describe the quantum states in composite quantum systems.

Postulate 2 (Composite system postulate). The Hilbert space of a composite system is the
tensor product of the Hilbert spaces associated with each subsystem.

Unlike classical mechanics, the interaction between quantum systems can not be described
by force and collision. Fortunately, by this postulate, the description of composite quantum
systems provides us with a framework to explain the interaction between two quantum systems
from the quantum mechanics point of view. We will see more details later.

Example 2.1 (Two-energy-level atom and a photon (quantum optical system)). Imagine
two simple quantum systems:

• Subsystem 1: The two-energy-level atom can be described by a Hilbert space H1 corre-
sponding to its two possible energy states:

H1 “ Spant|0yatom , |1yatomu . (2.1)

Here, |0y represents the ground state (e.g., the atom is not excited), and |1y represents
the excited state (the atom is in an excited energy level).
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• Subsystem 2: The photon in a cavity can be described by a Hilbert space H2. For
simplicity, let’s assume the photon can either be in the vacuum state |0yphoton or in a
single-photon state |1yphoton, representing the presence or absence of a photon in the
cavity:

H2 “ Spant|0yphoton , |1yphotonu . (2.2)

The total system consists of the two subsystems (the atom and the photon), so the Hilbert
space of the composite system is the tensor product of H1 and H2:

Htotal “ H1 b H2 . (2.3)

This space describes all possible states of the combined system, where each component (atom
and photon) can be in any of their respective states.

The total Hilbert space will span the following basis states:

Htotal “ Spant|0yatom b |0yphoton , |0yatom b |1yphoton , |1yatom b |0yphoton , |1yatom b |1yphotonu .

(2.4)

These states represent:

• |0yatom b |0yphoton: The atom is in the ground state, and there is no photon in the cavity
(vacuum state).

• |0yatom b |1yphoton: The atom is in the ground state, and there is one photon in the
cavity.

• |1yatomb|0yphoton: The atom is in the excited state, and there is no photon in the cavity.

• |1yatom b |1yphoton: The atom is in the excited state, and there is one photon in the
cavity.

In this example, the atom and the photon are independent subsystems, and the state of
the combined system can be described by the tensor product of their individual states. The
composite system (Htotal) allows us to represent the possible interactions and correlations
between the atom and the photon. For instance, when the atom is excited (|1yatom) and there
is a photon in the cavity (|1yphoton), the system could represent an interaction where the atom
emits or absorbs a photon.

The tensor product structure reflects the fact that the total system is described by indepen-
dent subsystems that can each be in different states. For instance, the atom might be in state
|0yatom (ground state) while the photon is in state |1yphoton (one-photon state), represented as
|0yatom b |1yphoton. These are independent possibilities, so the total system’s state is described
by the tensor product of the individual states.

This example illustrates how the Composite System Postulate works in practice. The total
Hilbert space of the system (the atom and photon together) is the tensor product of the Hilbert
spaces of the individual subsystems (the atom and the photon). The tensor product allows us
to describe all the possible combinations of states between the atom and the photon, and it is
a key idea when considering composite quantum systems in quantum mechanics.
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2.1.2 Physical Quantities and Measurement

Given a quantum system, to describe the quantum system, we need to formulate the associated
Hilbert space. In addition, in physics, besides the state of the system, we are also interested
in other physical quantities, such as energy and momentum. Hence, we want to calculate the
physical quantities, from the constructed Hilbert space in quantum mechanics framework.
The following postulates provide us with the answers to these problems.

Postulate 3 (Operator postulate). A measurable physical quantity is described by a Her-
mitian operator Q : H Ñ H. The eigenvectors for Q form an orthogonal basis for H. The
result of measuring a physical quantity Q must be one of the eigenvalues of the corresponding
observable Q.

Postulate 4 (Measurement postulate). The result of measuring a physical quantity Q must
be one of the eigenvalues of the corresponding observable Q. Let λi be the eigenvalue of the
unit eigenvector |ψiy, where i “ 1, ¨ ¨ ¨ , d. The probability of obtaining λn by measuring the
quantum state |ψny is given by:

| xψn|ψy |2

| xψ1|ψy |2 ` | xψ2|ψy |2 ` ¨ ¨ ¨ ` | xψd|ψy |2
. (2.5)

So far, we have the theoretical basis for stationary quantum mechanics. We can now
consider some concrete examples.

Example 2.2 (Cold hydrogen atom). Consider a cold single hydrogen atom. The electron in
the atom can occupy different energy levels. For simplicity, assume the hydrogen atom is cold
enough so that we can only focus on the two lowest energy levels:

E0 “ 0 (ground state) and E1 “ 10.2 eV (first excited state) ,

these energies can be obtained from solving the well-known Schrodinger equation. The
Hamiltonian operator H for this system acts on the quantum states |ψ0y and |ψ1y, which
correspond to the ground state and first excited state, respectively:

H |ψ0y “ E0 |ψ0y , H |ψ1y “ E1 |ψ1y . (2.6)

The Hilbert space H is spanned by these two states:

H “ spant|ψ0y , |ψ1yu . (2.7)

Now, consider the atom in a superposition state:

|ψy “ a0 |ψ0y ` a1 |ψ1y , (2.8)

where a0 and a1 are complex coefficients.
When we measure the energy of the system, the possible outcomes and their probabilities

are:

E0 “ 0 eV , with probability |a0|2 , (2.9)

E1 “ 10.2 eV , with probability |a1|2 . (2.10)

This example illustrates a simple quantum system—the hydrogen atom with two energy
levels—and connects it to basic quantum measurement principles.
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Example 2.3 (Cold hydrogen atom in the cavity). Imagine two simple quantum systems:

• System 1: A single electron in a cold hydrogen atom with only two energy levels:

E0 “ 0 (ground state) and E “ 10.2 eV (first excited state).

• System 2: A photon in a cavity with two possible energy states:

E1
0 “ 0 (no photon) and E1 “ 2.5 eV (single photon).

The total quantum system consists of both the electron and the photon. The Hilbert space
of the composite system is the tensor product of the two subsystems, written as:

Htotal “ H1 b H2 . (2.11)

The total energy operator for this composite system, Htotal, combines the energies of the two
systems:

Htotal “ H1 b I2 ` I1 b H2 , (2.12)

where I1 and I2 are identity operators for the respective subsystems.
The total energy eigenstates and eigenvalues are:

|ψ00y “ |ψ0y1 b |ψ0y2 , with energy 0 eV , (2.13)

|ψ01y “ |ψ0y1 b |ψ1y2 , with energy 2.5 eV , (2.14)

|ψ10y “ |ψ1y1 b |ψ0y2 , with energy 10.2 eV , (2.15)

|ψ11y “ |ψ1y1 b |ψ1y2 , with energy 12.7 eV . (2.16)

The composite Hilbert space is spanned by these four states:

Htotal “ spant|ψ00y , |ψ01y , |ψ10y , |ψ11yu . (2.17)

Now, consider the total system in a superposition state:

|Ψy “ a00 |ψ00y ` a01 |ψ01y ` a10 |ψ10y ` a11 |ψ11y . (2.18)

When measuring the total energy, the possible outcomes and their probabilities are:

0 eV , with probability |a00|2 , (2.19)

2.5 eV , with probability |a01|2 , (2.20)

10.2 eV , with probability |a10|2 , (2.21)

12.7 eV , with probability |a11|2 , (2.22)

where a00, a01, a10, and a11 are dependent on the surrounding and the probabilities are nor-
malized such that |a00|2 ` |a01|2 ` |a10|2 ` |a11|2 “ 1.

This example illustrates a composite quantum system involving an electron and a photon,
linking the abstract mathematical description to a tangible physical scenario.

So far we have discussed the essential formalism for quantum entanglement. For more
details about quantum mechanics, see the note here. We discuss the main topic regarding
quantum mechanics in this note, that is, the quantum entanglement, directly in the next
chapter.
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2.2 Quantum Entanglement

Quantum entanglement is a fundamental phenomenon in quantum mechanics where the quan-
tum states of two or more particles become intrinsically correlated, regardless of the spatial
separation between them. This correlation is so profound that the state of each particle cannot
be fully described independently of the others. Entanglement challenges classical intuitions
about locality and separability, reshaping our understanding of the quantum world. It also
serves as a cornerstone in quantum information science, enabling groundbreaking applications
such as quantum teleportation, superdense coding, and quantum cryptography.

2.2.1 Entangled States

Let H1 and H2 be the Hilbert spaces corresponding to two quantum systems, with bases
t|0y1 , |1y1u and t|0y2 , |1y2u, respectively. Consider a quantum state in the composite system
H1 b H2 given by:

|ψy “
1

?
2

p|0y1 b |0y2 ` |1y1 b |1y2q . (2.23)

This state exhibits a remarkable property: if a measurement on the first subsystem yields
|0y1 (or |1y1), then the corresponding measurement on the second subsystem will yield |0y2 (or
|1y2) with certainty. In other words, the measurement outcomes for H1 and H2 are perfectly
correlated. This probabilistic dependence of measurement results is the hallmark of quantum
entanglement. The state in equation 2.23 is known as EPR state, named after Einstein,
Podolsky, and Rosen, who first discussed such correlations.

However, not all quantum states exhibit entanglement. Some states can be expressed as
the tensor product of two vectors, one from each Hilbert space. For such states, measurements
on one subsystem do not influence the other. Here is a modified version of the proof with
enhanced clarity and conciseness:

Theorem 2.1. Let |ψy P
Ân

i“1Hi. The results of measurement for each subsystem are
independent if and only if |ψy “ |ϕ1y b ¨ ¨ ¨ b |ϕny for some |ϕiy P Hi.

Proof. ( ùñ ) Let the basis for Hi be t|φ
piq
1 y , ¨ ¨ ¨ , |φ

piq
miyu. Any state in Hi can be written as

řmi
ji“1 a

piq
ji

|φ
piq
ji

y, where |a
piq
ji

|2 represents the probability of obtaining |φ
piq
ji

y upon measurement.
If |ψy “ |ϕ1y b ¨ ¨ ¨ b |ϕny, we can write:

|ψy “

˜

m1
ÿ

j1“1

a
p1q

j1
|φ

p1q

j1
y

¸

b ¨ ¨ ¨ b

˜

mn
ÿ

jn“1

a
pnq

jn
|φ

pnq

jn
y

¸

. (2.24)

Expanding this, we get:

|ψy “

m1
ÿ

j1“1

¨ ¨ ¨

mn
ÿ

jn“1

´

a
p1q

j1
¨ ¨ ¨ a

pnq

jn

¯

|φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y . (2.25)

The probability of obtaining the outcome |φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y, that is, obtaining |φ

piq
ji

y in the

ith subsystem for all i “ 1, ¨ ¨ ¨ , n is:

Probp|φ
p1q

j1
y , ¨ ¨ ¨ , |φ

pnq

jn
yq “ |a

p1q

j1
¨ ¨ ¨ a

pnq

jn
|2 “ |a

p1q

j1
|2 ¨ ¨ ¨ |a

pnq

jn
|2 . (2.26)
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The conditional probability of obtaining |φ
piq
ji

y in the ith subsystem, given the outcomes of
the other subsystems, is:

Probp|φ
piq
ji

y | |φ
p1q

j1
y , ¨ ¨ ¨ , |̂φ

piq
ji

y, ¨ ¨ ¨ , |φ
pnq

jn
yq

“
Probp|φ

p1q

j1
y , ¨ ¨ ¨ , |φ

piq
ji

y , ¨ ¨ ¨ , |φ
pnq

jn
yq

Probp|φ
p1q

j1
y , ¨ ¨ ¨ , |̂φ

piq
ji

y, ¨ ¨ ¨ , |φ
pnq

jn
yq

. (2.27)

Substituting the probabilities:

Probp|φ
piq
ji

y | ¨ ¨ ¨ q “
|a

p1q

j1
|2 ¨ ¨ ¨ |a

pnq

jn
|2

|a
p1q

j1
|2 ¨ ¨ ¨ |̂a

piq
ji

|2 ¨ ¨ ¨ |a
pnq

jn
|2

“ |a
piq
ji

|2 . (2.28)

Since this is independent of the measurement outcomes of the other subsystems, the mea-
surements are independent for separable states.

( ðù ) Let |ψy P
Ân

i“1Hi. Suppose the measurement outcomes for each subsystem are

independent. This means that for a measurement basis t|φ
piq
ji

yu in each subsystem, the joint

probability of obtaining the outcome |φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y must satisfy:

Probp|φ
p1q

j1
y , ¨ ¨ ¨ , |φ

pnq

jn
yq “

n
ź

i“1

Probp|φ
piq
ji

yq . (2.29)

Write |ψy in the product basis t|φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
yu:

|ψy “
ÿ

j1,...,jn

cj1,...,jn |φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y . (2.30)

The probability of obtaining the outcome |φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y is:

Probp|φ
p1q

j1
y , ¨ ¨ ¨ , |φ

pnq

jn
yq “ |cj1,...,jn |2 . (2.31)

From the independence assumption, we know:

|cj1,...,jn |2 “ p1pj1q ¨ p2pj2q ¨ ¨ ¨ ¨ ¨ pnpjnq , (2.32)

where pipjiq depends only on ji.
The condition |cj1,...,jn |2 “ p1pj1q ¨ ¨ ¨ ¨ ¨ pnpjnq implies that the amplitudes cj1,...,jn must

factorize. That is:

cj1,...,jn “ a
p1q

j1
a

p2q

j2
¨ ¨ ¨ a

pnq

jn
, (2.33)

where a
piq
ji

depends only on ji.
Substitute the factorized form of cj1,...,jn back into the expansion of |ψy:

|ψy “
ÿ

j1,...,jn

´

a
p1q

j1
a

p2q

j2
¨ ¨ ¨ a

pnq

jn

¯

|φ
p1q

j1
y b ¨ ¨ ¨ b |φ

pnq

jn
y . (2.34)
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Rearranging terms:

|ψy “

˜

ÿ

j1

a
p1q

j1
|φ

p1q

j1
y

¸

b

˜

ÿ

j2

a
p2q

j2
|φ

p2q

j2
y

¸

b ¨ ¨ ¨ b

˜

ÿ

jn

a
pnq

jn
|φ

pnq

jn
y

¸

. (2.35)

Define:

|ϕiy “
ÿ

ji

a
piq
ji

|φ
piq
ji

y P Hi . (2.36)

Thus, |ψy “ |ϕ1y b ¨ ¨ ¨ b |ϕny.

From theorem 2.1, we can formalize the entanglement mathematically, we define separable
and entangled states bases on algebra point of view as follows:

Definition 14 (Entangled and Separable States). Let H1,H2, . . . ,Hn be the Hilbert spaces
associated with n quantum systems. A quantum state |ψy P

Ân
i“1Hi is said to be separable

if it can be written as the tensor product of n states:

|ψy “ |ϕ1y b |ϕ2y b ¨ ¨ ¨ b |ϕny , |ϕiy P Hi @i. (2.37)

If such a decomposition is not possible, the state |ψy is said to be entangled.

This distinction between separable and entangled states is fundamental to quantum me-
chanics and underpins many of its nonclassical features.

2.2.2 Classification

The entangled quantum states can be classified by SLOCC equivalent classes. SLOCC stands
for Stochastic Local Operations and Classical Communication and is a concept primarily used
in the context of quantum information theory and entanglement. The SLOCC equivalence
is used to classify entangled states into equivalence classes, meaning that within the same
class, states are ”essentially” the same in terms of the type of entanglement they represent.
Knowing whether states are SLOCC equivalent helps determine their usefulness in quantum
protocols like quantum teleportation or superdense coding. Physically, two quantum states
are considered SLOCC equivalent if one can be transformed into the other (and vice versa)
using stochastic local operations and classical communication. In essence:

• Stochastic: The operations may succeed only probabilistically, meaning there is no
guarantee of success in a single trial, but the transformation can theoretically occur
with some non-zero probability.

• Local Operations (LO): Operations performed independently on each part of a multi-
partite system.

• Classical Communication (CC): Classical means allow communication between parties.

These conditions mean that by means of some basic quantum devices, these quantum states
can be transformed to each other, which means that these quantum states can achieve the
same quantum tasks through some simple operations. Technologically, these quantum states
are viewed equivalent in quantum information.

Mathematically, the SLOCC equivalent relation is modeled by viewing the
Ân

i“1 SLpHiq

as a group action on
Ân

i“1Hi.

14



Definition 15 (SLOCC Equivalent). Let |ψy , |φy P
Ân

i“1Hi be two quantum states, they are
called SLOOC equivalent, denoted by |ψy „ |φy, if and only if there exists Ai P SLpHiq,
i “ 1, ¨ ¨ ¨ , n such that:

|ψy “ A1 b ¨ ¨ ¨ bAn |φy . (2.38)

Example 2.4 (Bipartite system). Consider the following two states in a two-qubit system
with Hilbert space H b H, where H having an orthonormal basis t|0y , |1yu:

|ψy “ |0y b |0y ` |1y b |1y , |φy “
?
2 |0y b |0y `

1
?
2

|1y b |1y . (2.39)

Since there exist two matrices:

A “
1

?
2

„

2 0
0 1

ȷ

, B “

„

1 0
0 1

ȷ

, (2.40)

where A,B P SLpHq. Check that:

pAbBq|ψy “ A|0y bB|0y `A|1y bB|1y

“
?
2 |0y b |0y `

1
?
2

|1y b |1y “ |φy . (2.41)

Therefore, |ψy „ |φy.

3 Algebraic Geometry of Quantum Mechanics

Quantum mechanics is a modern abstract theory still under development. Algebraic geometry,
which encompasses both theoretical and computational aspects, is introduced to the study
of quantum mechanics. In this chapter, we will discuss the most direct one, the projective
geometry approach.

3.1 Projective Geometry and Up1q Gauge Theory

We have discussed the quantum mechanics state in the previous section. The quantum states
are equivalent in stationary quantum mechanics if |φy “ ei θ |ψy. Physically, the stationary
quantum mechanics is a Up1q gauge theory. This reminds mathematicians of the projective
space immediately! Recall that the underlying set of Pn

k is:

Pn “ tra1 : ¨ ¨ ¨ : an`1s | ra1, ¨ ¨ ¨ , an`1s P kn`1zt0uu , (3.1)

where

ra1 : ¨ ¨ ¨ : an`1s “ rb1 : ¨ ¨ ¨ : bn`1s

ðñ cra1, ¨ ¨ ¨ , an`1s “ rb1, ¨ ¨ ¨ , bn`1s for some c P k˚ . (3.2)

Let n “ dimH ă 8, then we can describe the Hilbert space as a projective n´space over
C, we call this projective pn´ 1q´space projective Hilbert space and denote it by PpHq.
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Example 3.1. In quantum information, the two-level systems, that is, the Hilbert spaces
having dimension two, are often considered. Let H be a two-dimensional Hilbert space with
basis t|0y , |1yu. The projective Hilbert space is:

PpHq “ trψ1 : ψ2s | |ψy “ pψ1, ψ2q P C2zt0uu . (3.3)

Since in PpHq, rψ1 : ψ2s “ A ei θrφ1 : φ2s, PpHq is a two-dimensional, called Bloch sphere
in quantum mechanics.

This is the motivation for utilizing the projective geometry to describe the quantum
systems. Now we want to consider the entanglement in the composite quantum systems, the
tensor product is introduced now, so we need to introduce the notion of projective varieties
here.

3.2 Varieties, Quantum States, and Entanglement

We have known that quantum entanglement is a fundamental feature of quantum mechan-
ics, and can be classified and understood using algebraic geometry, particularly through the
concept of secant and tangent varieties. These varieties provide a geometric framework to
describe and distinguish different levels of entanglement in multipartite quantum systems.

3.2.1 Separable States for Distinguishable Particles as Segre Varieties

We start our discussion with variety descriptions of separable quantum states from the eas-
iest distinguishable particle system. Recall that the simple tensor in the Hilbert spaces are
separable quantum states:

|ψy “ |ϕ1y b ¨ ¨ ¨ b |ϕny . (3.4)

From algebraic geometry, it is easy to see that the set of all such separable states has geometric
meaning, which is given by the following theorem:

Theorem 3.1. Let a n´distinguishable-particle system has the Hilbert space H “
Ân

i“1Hi.
Then the set of all separable states forms a Segre variety:

S Ď P pHq . (3.5)

3.2.2 Coherent States for Identical Particles as Varieties

Just as we extended the concept of the Segre variety to the Veronese and Grassmann varieties,
we can similarly extend the application of the Segre variety to describe separable states in
quantum systems with symmetric or antisymmetric tensor product spaces. These quantum
systems, characterized by such structures, are referred to as identical particle systems.

Separable States for Bosons as Veronese Varieties Bosons are a type of identical
particle that obeys Bose-Einstein statistics, and their quantum states are symmetric under
the exchange of particles. This symmetry means that the overall quantum state remains
unchanged if one swaps any two bosons in the system. Hence, intuitively, instead of regarding
the Hilbert space of a bosonic composite system as a tensor product of Hilbert spaces

Ân
i“1H,

we regard it as the symmetric tensor of Hilbert spaces product SymnH.
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As we previously discussed, in quantum mechanics, a separable state for a composite
system can be written as a product of states from its constituent subsystems. The notion of
separable states changes to coherent state for composite systems of bosons.

Definition 16. A quantum state |φy P SymnH is called a coherent state if and only if there
exists |ψy “

řd
j“1 |jy P H such that:

|φy “ |ψy
dn . (3.6)

Hence, naturally, we can consider the following map:

Ω : PpHq – Pd´1
C Ñ PpSymnHq , r|ψys ÞÑ r|φys , (3.7)

which is indeed a Veronese embedding and satisfies:

ImΩ “ V Ď PpSymnHq . (3.8)

From the above argument, the set of all such coherent states has geometric meaning:

Theorem 3.2. Let a n´identical-boson system has the Hilbert space SymnH. Then the set
of all separable states forms the Veronese variety:

V Ď P pSymnHq . (3.9)

Hence, the Veronese variety V parametrizes the coherent states for n bosons, capturing
the geometry of symmetric quantum states. These states are inherently simpler to describe
compared to entangled states.

Separable States for Fermions as Grassmann Varieties Fermions, in contrast to
bosons, obey Fermi-Dirac statistics, which require their quantum states to be antisymmetric
under particle exchange. This antisymmetry means that the overall quantum state has an
additional ´1 factor if one swaps any two fermions in the system. In addition. The antisym-
metry also leads to the well-known Pauli exclusion principle, stating that no two fermions
can occupy the same quantum state.

Like bosons, the notion of separable states changes to coherent states as well. For n
fermions, coherent states are constructed using the wedge product and the Hilbert space of a
fermionic composite system is the wedge product of Hilbert spaces

ŹnH. Just like previous
discussion, the coherent states can be understood geometrically.

Theorem 3.3. Let a n´identical-fermion system has the Hilbert space
ŹnH. Then the set

of all separable states forms the Grassmann variety:

G Ď P
´

ľn
H

¯

. (3.10)

Due to the antisymmetric nature of fermionic systems, they are inherently more complex
to analyze than bosonic systems. While the proof of this theorem follows a similar structure
to the bosonic case, it requires additional physical arguments specific to fermions. For brevity,
we will omit the detailed proof here.

The Grassmann variety G parametrizes the separable states for n fermions. It represents
the geometric space of antisymmetric quantum states, reflecting the constraints imposed by
Fermi-Dirac statistics.

Both Veronese and Grassmann varieties provide elegant geometric descriptions of the
coherent states for bosonic and fermionic systems, respectively. These varieties also serve as
a foundation for understanding more complex quantum states, such as entangled states.
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3.2.3 Entangled States as Secant and Tangent Varieties

The secant varieties of the Segre variety, Veronese variety, or Grassmann variety generalize
the notion of separability or coherent states and provide a geometric hierarchy for classifying
quantum states based on their entanglement properties. We have discussed that the k´secant
variety σkpXq of the Segre variety, Veronese variety, or Grassmann variety, denoted by X is
the Zariski closure of the union of projective spaces spanned by points on X. Physically,
σkpXq corresponds to quantum states that can be expressed as superpositions of less than or
equal to k separable or coherent states.

Moreover, since we have theorem 1.1, an inclusion sequence of secant varieties. Consider
the sequence for secant varieties of the variety X, this hierarchy of secant varieties provides
a geometric measure of the degree of entanglement. That is to say, let H be the Hilbert
space for a distinguishable particle, fermionic, or bosonic quantum system, that has one of
the following forms:

n
â

i“1

Hi , SymnH1 ,
ľn

H1 . (3.11)

We can obtain an inclusion sequence:

X “ σ1pXq Ď σ2pXq Ď σ3pXq Ď ¨ ¨ ¨ Ď P pHq . (3.12)

States in the proper k´secant varieties ςkpXq “ σkpXqzσk´1pXq with larger k value require
more separable or coherent states to be expressed. Hence, larger values for the number k
indicate higher levels of entanglement.

Moreover, we can introduce the tangent varieties of X, the k´tangent varieties are con-
tained in the k´secant variety:

τkpXq Ď σkpXq . (3.13)

The tangent varieties also represent parts of the entangled states of the quantum systems.
We will see more applications of representing entangled states as tangent and secant varieties
in the next section.

4 Applications: Entangled States Classification

So far, we have discussed the relations between the notions in quantum mechanics and alge-
braic geometry, which is summarized in the table 1.

Since we know how to utilize algebraic geometry to describe the notions in quantum
mechanics, we can see some applications to understand why algebra can be useful in quantum
mechanics.

Since the entangled states can be described by varieties, we can apply the varieties to
classify the entangled states with different degrees of entanglement. Before applying First we
need the following lemma:

Lemma 4.1. The Segre variety, Veronese variety, and Grassmann variety are SLOCC in-
variant.
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Quantum mechanics Algebraic geometry

Quantum Hilbert space Projective space
Entanglement classes Projective varieties

Separable states for distinguishable particles Segre varieties
Separable states for bosons Veronese varieties
Separable states for fermions Grassmann varieties

Entangled states Secant and tangent varieties
Degree of entanglement Indices of proper secant varieties

Table 1: Relations between quantum mechanics and algebraic geometry.

Proof. We prove the case for the Segre variety. Consider a Segre embedding:

PpV1q ˆ PpV2q ˆ ¨ ¨ ¨ ˆ PpVkq ãÑ PpV1 b V2 b ¨ ¨ ¨ b Vkq , prv1s, ¨ ¨ ¨ , rvnsq ÞÑ rv1 b ¨ ¨ ¨ b vns .
(4.1)

Let G “ GLpV1q ˆ GLpV2q ˆ ¨ ¨ ¨ ˆ GLpVkq and Vi be vector spaces over a field K (say C),
and dimpViq “ ni. G acts on V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ Vk by:

pg1, g2, . . . , gkq ¨ pv1, v2, . . . , vkq “ pg1v1, g2v2, . . . , gkvkq , (4.2)

where gi P GLpViq and vi P Vi.
On PpV1 b V2 b ¨ ¨ ¨ b Vkq, the group G acts naturally by:

pg1, g2, . . . , gkq ¨ rws “ rpg1 b g2 b ¨ ¨ ¨ b gkqws , (4.3)

for w P V1 b V2 b ¨ ¨ ¨ b Vk and gi P GLpViq. We now check that:

σppg1, g2, . . . , gkq ¨ prv1s, rv2s, . . . , rvksqq “ pg1, g2, . . . , gkq ¨ σprv1s, rv2s, . . . , rvksq . (4.4)

The left-hand side is:

σ
`

pg1, g2, . . . , gkq ¨ prv1s, rv2s, . . . , rvksq
˘

“ σprg1v1s, rg2v2s, . . . , rgkvksq

“ rg1v1 b g2v2 b ¨ ¨ ¨ b gkvks . (4.5)

The right-hand side is:

pg1, g2, . . . , gkq ¨ σprv1s, rv2s, . . . , rvksq “ pg1, g2, . . . , gkq ¨ rv1 b v2 b ¨ ¨ ¨ b vks

“ rpg1 b g2 b ¨ ¨ ¨ b gkqpv1 b v2 b ¨ ¨ ¨ b vkqs

“ rg1v1 b g2v2 b ¨ ¨ ¨ b gkvks. (4.6)

Hence, the Segre embedding is G-equivariant. Since the orbits for GLpViq acting on Vi are
t0u and Vizt0u and PGLpViq – PSLpViq for Vi over C, Segre variety is a SLOCC orbit and
therefore SLOCC invariant.

Lemma 4.2. The k´tangent and k´secant varieties of Segre variety, Veronese variety, and
Grassmann variety are SLOCC invariant.

Proof. Since the corresponding variety X is SLOCC invariant, it is easy to see that the
k´secant variety which is spanned from X is SLOCC invariant as well.
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We can now apply these lemmas to classify the entangled states. Since we know that the
separable states or coherent states form certain Segre, Veronese, or Grassmann varieties X
and by lemma 4.1 and 4.2, the varieties in the inclusion sequence given in theorem 1.1 and
τkpXq Ď σkpXq, which are partial order relations, are all SLOCC invariant, we can propose
the following theorem for classification of entangled states:

Theorem 4.3 (Entangled states classification). Given a Hilbert space for a quantum system,
we can classify the quantum states in the Hilbert space into several classes by the following
steps:

• Identify the Segre variety, Veronese variety, or the Grassmann variety of the projective
Hilbert space PpHq. Denote it as X.

• Classify the entangled states by identifying the sequence of k´secant variety:

X “ σ1pXq Ď σ2pXq Ď ¨ ¨ ¨σnpXq Ď PpXq . (4.7)

If ςkpXq ‰ H, then each ςkpXq represents an entangled state family.

• Identify the k´tangent variety for each σkpXq:

τkpXq Ď σkpXq . (4.8)

If τkpXq Ř σkpXq, then τkpXq ςkpXqzτkpXq represent two different entangled state
families.

• Make a table for the entangled states from the above information:

Entangled state families Varieties

Class N τkpXq

Class N ´ 1 ςkpXqzτkpXq
...

...
Class 1 X

Remark 8. The theorem 4.3 can not always provide all SLOCC classes, especially for high-
dimensional spaces, and therefore called families here. We need to identify the number of
SLOCC classes in each projective Hilbert space to make sure that we obtain all classes or
not. If we have not obtained all classes, then we can apply other methods, such as ranks, to
classify more precisely. These methods may not be related to algebraic geometry and therefore
will not discuss it here. See the references for more details about it.

From the table obtained in theorem 4.3, we can make an onion-like entangled state family
diagram as Figure 1.

4.1 Distinguishable Particles Entangled States Classification

Since the Segre variety is the easiest variety for the separable or coherent states, We first apply
theorem 4.3 to the easy distinguishable two-qubit system, which is well-studied by Schmidt
decomposition, as an easy example.
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ς1pXq τ1pXq ς2pXq τ2pXq ς3pXq τ3pXq

Figure 1: Entangled state family diagram.

Example 4.1 (Distinguishable two-qubit system). Consider a two-qubit quantum system with
Hilbert space with Hilbert space H “ H1 b H1 – C2 b C2, where H1 having orthonormal basis
t|0y , |1yu. The projective Hilbert space is PpHq – P3

C. The Segre variety for P3
C is given by:

X “

"„

1 : a : b : ab

ȷ

P PpHq

ˇ

ˇ

ˇ

ˇ

a, b P C
*

. (4.9)

We apply the proper secant variety first. The 2´secant variety of X is given by:

σ2pXq “

"„

λ1 ` λ2 : λ1a1 ` λ2a2 : λ1b1 ` λ2b2 : λ1a1b1 ` λ2a2b2

ȷ

P PpHq

ˇ

ˇ

ˇ

ˇ

λ1, λ2, a, b P C
*

.

(4.10)

Consider the following states:

r1 : 0 : 0 : 1s “ r1 : 1 : 1 : 1s ` r1 : ´1 : ´1 : 1s , (4.11)

r1 : 0 : 0 : ´1s “ r1 : 1 : ´1 : ´1s ` r1 : ´1 : 1 : ´1s , (4.12)

r0 : 1 : 1 : 0s “ r1 : 1 : 1 : 1s ´ r1 : ´1 : ´1 : 1s , (4.13)

r0 : 1 : ´1 : 0s “ r1 : 1 : ´1 : ´1s ´ r1 : ´1 : 1 : ´1s , (4.14)
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which are easy to see in σ2pXq. In PpHq the corresponding four states are called entangled
Bell states or Bell basis, which represent the entangled states in PpHq. Therefore, the
2´secant variety fills all PpHq – P3

C. We can conclude the sequence:

X “ σ1pXq Ď σ2pXq “ P3
C – PpHq . (4.15)

We now move to the tangent variety. The 2´tangent star variety of X is given by:

τ2pXq “
ď

pPX

T ˚
p pXq , (4.16)

where the tangent star at p “ r1 : a : b : abs P X can be calculated as follows:

T ˚
p pXq “

"

lim
ϵÑ0

λ

ϵ
pr1 : a` ϵ : b` ϵ : pa` ϵqpb` ϵqs ´ r1 : a : b : absq ` r1 : a : b : abs

ˇ

ˇ

ˇ

ˇ

λ P C
*

“ tλr0 : 1 : 1 : a` bs ` r1 : a : b : abs | λ P Cu . (4.17)

Therefore, we can conclude that:

τ2pXq “
ď

pPX

T ˚
p pXq “ P3

C “ σ2pXq – PpHq . (4.18)

So we can make the following table: This is the complete result for the distinguishable two-

Names SLOCC classes Varieties

Bell states |0y b |0y ` |1y b |1y ς2pXq

Separable states |0y b |0y X

Table 2: Table for the SLOCC classes, their corresponding varieties.

qubit system, which satisfies the known result obtained from Schmidt decomposition.
We can see that the Bell states we obtained from the ς2pXq in the inclusion sequence

X “ σ1pXq Ď σ2pXq “ P3
C – PpHq, is indeed more entangled than the separable states in

σ1pXq “ X.

4.2 Bosonic Entangled States Classification

To classify the bosonic systems by applying the Veronese variety, we need to describe the
Veronese variety and its projective space first. Let t|jyudi“1 be an orthonormal basis for H.
For a composite bosonic system, for all coherent states |φy P SymnH, there exists |ψy “
řd

j“1 |jy P H such that:

|φy “ |ψy
dn . (4.19)

Therefore, we can write:

|φy “
ÿ

n1`¨¨¨`nd“n

d
ź

j“1

x
nj

j

ÿ

αPF rn1,¨¨¨ ,nds

|αp1qy b ¨ ¨ ¨ b |αpnqy , (4.20)
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where the set F rn0, ¨ ¨ ¨ , nds is defined as:

F rn0, ¨ ¨ ¨ , nds “

"

α : t1, ¨ ¨ ¨ , nu Ñ t1, ¨ ¨ ¨ , du | α has value j for nj times

*

. (4.21)

Then we can represent r|φys P PpSymnHq and r|ψys P PpHq in homogeneous coordinates:

r|ψys “ rx1, ¨ ¨ ¨ , xds , r|φys “ rxn1 : xn´1
1 x2 : x

n´1
1 x3 : ¨ ¨ ¨ : xd´1x

n´1
d : xnd s . (4.22)

Example 4.2 (Bosonic three-qubit system). Consider a three-qubit quantum system with
Hilbert space H “ Sym3H, where H having an orthonormal basis t|0y , |1yu. The Veronese
variety is therefore given by:

V “

"„

1 : x : x2 : x3
ȷ

ˇ

ˇ

ˇ

ˇ

x P C
*

. (4.23)

The 2´secant variety is given by:

σ2pV q “

"„

λ1 ` λ2 : λ1x` λ2y : λ1x
2 ` λ2y

2 : λ1x
3 ` λ2y

3

ȷ
ˇ

ˇ

ˇ

ˇ

λi, x, y P C
*

. (4.24)

We can see that σ2pXq “ PpSym3Hq – P3
C. Hence, we can conclude the sequence:

V “ σ1pV q Ď σ2pV q “ PpSym3Hq . (4.25)

Hence, we can conclude The 2´tangent variety can be calculated by considering a point p “

r1 : x : x2 : x3s P V . The tangent for p is:

T ˚
p pV q “

"

lim
ϵÑ0

λ

ϵ

`

r1 : px` ϵq : px` ϵq2 : px` ϵq3s ´ r1 : x : x2 : x3s
˘

` p

ˇ

ˇ

ˇ

ˇ

λ P C
*

“ tr2 : λ` x : 2λx` x2 : 3λx2 ` x3s | λ P Cu . (4.26)

Hence, the tangent star variety is:

τ2pV q “
ď

pPV

T ˚
p pV q “ tr2 : λ` x : 2λx` x2 : 3λx2 ` x3s | x, λ P Cu . (4.27)

It is easy to see that τ2pV q Ř σ2pV q, so we can make the following table:

Names SLOCC classes Varieties

W states |0y d |1y d |1y τ2pV q

GHZ states |0y d |0y d |0y ` |1y d |1y d |1y ς2pV qzτ2pV q

Separable states |0y d |0y d |0y V

Table 3: Table for the SLOCC classes, their corresponding varieties.

This is the complete SLOCC class for the system, satisfying the known result for a three-
qubit bosonic system.

The W states belong to the tangent star variety τ2pV q consists of points spanned by the
limits of secant lines. This geometry indicates that W states are not maximally entangled but
still possess multipartite entanglement. The tangent geometry implies robustness to particle
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loss, making W states ideal for quantum networks and communication where qubit loss is a
concern.

GHZ states are part of the second secant variety σ2pV q, excluding the tangent star variety.
This means GHZ states represent a higher-dimensional subvariety with maximal multipartite
entanglement. The broader geometric space and high-dimensional entanglement structure
make GHZ states perfect for applications requiring maximal correlations, such as quantum
nonlocality and fault-tolerant quantum computing.
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