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Abstract

This report delves into the intersection of topology, especially the homotopy theory,
and the Feynman path integral in theoretical physics. Initially exploring foundational
concepts in topology, such as topological spaces and quotient topology, the narrative
progresses to algebraic topology and the fundamental group. This theoretical framework
serves as a precursor to understanding homotopy theory, pivotal in algebraic topology
and its application to the Feynman path integral. The article concludes by presenting
critical theorems that bridge topology with the path integral framework, emphasizing
their synergistic relationship in quantum mechanics.
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1 Introduction

Algebraic topology is a vibrant research field that employs algebraic structures to study the
properties of topological spaces. One of the key algebraic structures within this field is homo-
topy, which draws immediate parallels to the Feynman path integral in physics. Homotopy
theory offers a framework to perform path integrals in configuration spaces characterized by
non-trivial topology. The algebraic tools provided by homotopy theory are crucial for ana-
lyzing path integrals in such complex configuration spaces. We explore the power of these
theories and their practical application in the realm of quantum mechanics in this report.

2 Topology

Topology is a branch of mathematics concerned with the study of spaces and their properties
under continuous transformations, without the need for precise measurements. It explores
concepts such as continuity, connectedness, and compactness, focusing on the underlying
structure rather than specific geometric details. By defining sets of points and the relation-
ships between them, topology provides a framework for understanding spatial relationships
across diverse fields, from pure mathematics to physics and engineering. With applications
ranging from network analysis to the study of shapes and surfaces, topology offers a versa-
tile toolkit for solving problems in various domains. The theoretical basis of topology is the
definition of topological space.

2.1 Topological Spaces

Definition 1. Topological space
Topological Space is a space that the open sets (and therefore closed sets) are defined.
Mathematically, topological space is a nonempty set X with a collection O of subsets of X
satisfying the following conditions

* 9, X €0, (2.1)
o If {Un}aes S O, then | J Ua € O, (2.2)
aeJ
« IfU, Uy €0, then (Ui €0, (2.3)
=1

where J is an index set which may be infinite or even uncountable.

The sets in the collection O are called open sets. The set F' is said to be closed if X — F
is open.

Remark 1. A set may be open and closed at the same time in a topological space.

Every metric space and manifold naturally falls within the realm of topological spaces. In
fact, topological spaces serve as a generalization of metric spaces. Consequently, it becomes
imperative to extend the definition of continuous functions, which is essential in topology,
from metric spaces (e — d definition) to accommodate this broader framework.



Definition 2. Continuous function
Let X andY be topological spaces and f : X —'Y be a function. f is said to be continuous
if f~Y(U) is open in X for all U open Y.

Now we discuss the quotient, which is another essential definition in topology. We need
to define the equivalent relation first.

Definition 3. Equivalent relation
Let ~ be a relation on a set A. ~ is an equivalence relation if for all a,b,c € A

e a~a, (2.4)
e Ifa~ b, then b~ a, (2.5)
e Ifa~bandb~ c, then a ~ c.

Some simple examples of the equivalent relation are the equal relation and congruence
modulo.
We now can define the equivalent class with the definition of equivalent relation.

Definition 4. FEquivalent class
Let X be a set and ~ be an equivalent relation in X. The equivalent class of v € X denoted

by [x] is
[2] = {y € X|y ~ x}.

Now we discuss the quotient.

Definition 5. Quotient
The quotient of a set X and equivalent relation ~ denoted by X/ ~ is

X/ ~={[z]|x € X}.
The concept of equivalent class and quotient is classification, here is a simple example.

Example 2.1. Classification of shapes
Let X be a set of all geometric shapes. The is an equivalent relation ~ defined as a ~ b if
and only if a and b are the same shape. Then

X/ ~= {triangle, square, circle, - - - }.

The definition of quotient can be any set with equivalent relations. If X is a topological
space, we have the quotient topology.

Definition 6. Quotient topology
Let X be a topological space and ~ be an equivalent relation in X. Define the quotient map
m:X —> X/ ~, x— [x]. Then X/ ~ is a topological space under the quotient topology
defined as

Uc X/~ isopen «— 7 +(U) < X is open.

In topology, the quotient of an equivalent relation can be viewed as ”sticking points
together”. A simple example is "making a circle”.
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Figure 1: Making a circle is as quotient topology.

Example 2.2. Consider an interval [0,27], which is a topological space, define an equivalent
relation 0 ~ 2w, then the quotient space [0,2m]/ ~ can be viewed as a circle as shown in
Figure 1.

The concept of quotient In topology, we focus on the openness and closeness of the set.
Alternatively, we can say we focus on the connection of the space. The spaces with the
same connection are viewed as the same in topology. So many people say that "a cup is
identical to a donut in topology”. To justify if two topological spaces are identical or not,
mathematicians came up with the concept of topological invariants. The most well-known
one is Fuler characteristic.

Example 2.3. Euler characteristic
The Euler characteristic of a two-dimensional space is

x=F-V+E,
where F, V, E is the number of faces, vertices, and edges.

The abstract nature of topological spaces necessitates additional mathematical structures
for in-depth study. One approach involves imbuing the topological invariants of topological
spaces with algebraic structures, leading to a specialized research field known as algebraic
topology.

2.2 Homotopy Theory in Algebraic Topology

In algebraic topology Homotopy theory is a branch of algebraic topology, that studies con-
tinuous mappings between topological spaces and explores when these mappings can be con-
tinuously deformed into one another. It provides insights into the shape of spaces, revealing
connections and symmetries between them. Through concepts like homotopy equivalence
and homotopy groups, it offers powerful tools for understanding the fundamental properties
of spaces. Before discussing the homotopy theory, we need to discuss what is path in topology.

Definition 7. Path, loop, and product of paths

Let X be a topological space. A path in X is a continuous function f :[0,1] — X. If a path
f satisfies f(0) = f(1) = x, then it is said to be a loop with the bases pint x. The product
of two paths f and g satisfying f(1) = g(0) is also a path and denoted by f - g defined as

f-g(t):{f@t% fO<t<

1
L
g(2t_1)7 Zf% st

< L

3



The meaning of the product of paths is connected, the visualization of the product of paths or
loops is shown in Figure 2.

Hroduct of poxtns Pr’o&mot of ,QooPS
¥
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S

Figure 2: Product of paths and loops.

We can now define what is homotopy in algebraic topology.

Definition 8. Homotopy

A homotopy is a continuous function H : [0,1]*> — X satisfying H(0,t) = a and H(1,t) = b
for allt €[0,1]. The paths fo = H(-,0) : [0,1] - X and f1 = H(-,1) : [0,1] — X are said to
be homotopic and denoted by fo ~ fi.

Intuitively, the second variable of the homotopy H can be viewed as the index of the func-
tion f;, that is, H(-,7) = f;. Then we can imagine that two functions are homotopic means
that two paths can transform to each other continuously as shown in Figure 3.

Hom ow‘o’?(o P XThs

Figure 3: Homotopic paths.
The homotopic relation is an equivalent relation. Therefore, we have a natural equivalent
class.

Definition 9. Homotopy class
An equivalent class of a path f under homotopy is said to be the homotopy class of f.

With these definitions, we can start discussing fundamental group.



2.3 Fundamental Group

Now we can discuss the first topological invariant in this report, fundamental group.

Definition 10. Fundamental group
Let X be a topological space. The fundamental group is a group consisting of all homotopy
classes of a loop f :[0,1] = X and is denoted by w1 (X, z). That is,

m(X,z) = {[f] ‘ f is a loop with based point x in X}.

Remark 2. One can check that fundamental groups are groups.
We first look at the simplest nontrivial example, the fundamental group of a circle.

Example 2.4. Fundemental group for one-dimensional circle
By symmetry of the circle, the fundamental group is independent of the based point. The
fundamental groups like that are denoted by

m1 (S, x) = 7 (Sh).
The fundamental group for one-dimensional is
T (Sl) = Za

the strict proof of this example is a little long and complicated, but we can see the topological
meaning of this result intuitively.
Consider a path

w:[0,1] = S, t— (cos(2nt),sin(27t))

is certainly a loop, and the corresponding homotopy class [w] can generate the fundamental
group, that is,
(S =< [w] >=< 1 >=Z.

w s a path that rotates clockwise on the circle for one time. Its inverse w™' is the path
rotating in the opposite direction for one time. So we can see that the elements in 71 (S1) are
the homotopy class of W™, that is, the paths rotating clockwise or anticlockwise for n times as
shown in Figure /.

In general, the fundamental group may be difficult to compute. The fundamental groups
for some highly abstract spaces depend on those of basic topological spaces. We introduce an
important theorem here.

Theorem 2.1. Decomposition of fundamental groups Let X andY be topological spaces
andx e X, yeY. Then

(X x Y, (z,y)) = m(X,z) x m (Y, y).

We can see another simple example is the fundamental group for "donuts”.
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Figure 4: Visualization of 71 (S%).

Example 2.5. Fundamental group for two-dimensional ring surfaces

A d-dimensional donuts-like ring surface is called o d-dimensional torus and is defined by
(SH4. We often denote it by T¢. As shown in Figure 5, two homotopy classes can generate
the fundamental group of this topological space and another one is the identity element.
Mathematically, the fundamental group for the two-dimensional ring surface is isomorphic to
the cartesian product of two fundamental groups of one-dimensional circle, that is,

7T1(T2) = 71'1(51) X 7T1(Sl) ~7 x 7.

Frdomentc)  grovp fbr “donuts”

Figure 5: Fundamental group for "donuts”.

2.4 Covering Space

The strict analysis and computation of the fundamental group require the concept of covering
space and its lifting properties. These are what we will discuss in this section.

Definition 11. Covering space
Let X and X be topological spaces and p: X — X be a continuous function. (X,p) is called
a covering space if for all x € X, there exists an open neighborhood of x so that

e p'(U)= | U X, (2.7)
AeD
. p‘U_ is a homeomorphism for all Uy, (2.8)

where D is a discrete space and Uy are called sheets.



Remark 3. The covering spaces are NOT unique for a topological space.

A visualized covering space is like Figure 6. It is a space "layer by layer”, this is why wu)
are called sheets.

Figure 6: A visualized covering space, it is a space "layer by layer”.

A critical property of the covering space is lifting, which makes the covering space significant.

Theorem 2.2. Lifting properties

Let X be a topological space, f be a path in X so that f(0) = z, and (X,p) be the covering
space for X. Then there exist paths fy : [0,1] — X for all &y € p~'(z) so that pfy = f and
fA(O) = I). Moreover, the homotopy also has the same property. These paths and homotopy
are said to be lifted.

) +f Lod Fg@h ond  homotopy

§<U 2@/
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X G D

Figure 7: Lifted path and homotopy.

Some properties of the fundamental group may be difficult to view in the original topolog-

ical space. Then we move the paths or loops in the original topological space to the covering
space to do the analysis.



3 Feynman Path Integral

The Feynman path integral, introduced by Richard Feynman, revolutionized quantum me-
chanics by replacing the traditional wave function with a sum over all possible particle tra-
jectories. This approach provides a unified framework for understanding both classical and
quantum behavior, making it a powerful tool across various branches of theoretical physics.

The state of a particle is described by the probability amplitude of the jump from ¢; at time
t1 to g2 at time t9, denoted by K|q1,t1; g2, t2], which is a complex number. The probability of
the particle jumps from ¢; at time t; to go at time t1 is K|[q1,t1;q2, t2] K[q1, t1; g2, t2], where
Klq1,t1; q2,t2] is the complex conjugate of K[qi,t1; g2, t2]. The probability amplitude of the
jumping is given by the "sum of amplitude of all paths”, mathematically,

Klqi,t15g2, 2] = JDm e Stmit]

where JDm denotes the "functional integral” and can be imaged as Z . Note that the

me{all paths}
functional integral may be difficult to compute or sometimes even does not exist. However,

utilize the saddle point approximation. We can understand that the path satisfies S = 0
would give the path with the highest probability, this path is what we can observe under the
classical limit, that is, in the macroscopic world. Therefore, this path is called classical path.

Remark 4. Feynman path integral can explain the least action principle in Lagrangian me-
chanics.

Feynman path integral is widely applied in quantum field theory and statistical mechanics.
We discuss a simple example of how to compute the path integral.

Example 3.1. Free Particle
Consider a free particle with unit mass in an independent one-dimensional real space R. The

Lagrangian for this free particle is
c-1p
- 2q ’

where q is the generalized position. What is the probability amplitude jump from q; at time t;
to qy at time ty?
solution:

The action for this free particle is
ty 1
S=| =¢%t.

2
t;
The probability amplitude is given by Feynman’s time-slicing method

1 \N2 o N-1 el 0\
Klqp.ty;qiti] = lim <2m.§> le dg; exp {22 > (§> ]

—0 n=0

where § = (ty —t;)/N. Since the integral parts are all Gaussian, the probability amplitude is

. 1 N/2 1 N (N=1)/2 (Qf 7ql)2
K[vatf§Qi7tz‘] = ngloo Flf ﬁ@mf) exp ZW



1\ (a7 — a)*
o (g — @)®
N <2m’N§) P [2 INE }
1/2 o2
= — 1 exp 71(%0 %) .
27TZ(tf —ti) 2tf—2ti

4 Theorems for Path Integral

The concept of homotopy shares similarities with physicist Feynman’s path integral frame-
work. In this analogy, the trajectories followed in space align with the notion of homotopy
classes. However, the inclusion of topology isn’t universally necessary, particularly in uncom-
plicated spaces where trajectories are straightforward. The significance of topology in the
path integral framework becomes evident when it is extended to varied configuration spaces,
such as non-commutative and complex phase spaces, where the underlying structures may
manifest non-trivial topological characteristics. Upon acknowledging the indispensable sig-
nificance of topology within the framework of path integrals, we are prompted to introduce
what stands as one of the paramount theorems in this domain. This theorem underscores the
intrinsic relationship between topology and path integrals.

Theorem 4.1. Homotopy theorem for path integral
Let the configuration space X be a topological space and H be the collection of all homotopy
classes of the paths from q1 to go.

Klq1,t1; g2, t2] = Z AQJD(me a)eis[m;t].
aeH

In particular, when the paths are loops, we can write

Klg.tigtl = Y A J D(m € a)eiStm]
aem (X,q)

The proof of this theorem is very complicated so we will skip it here. However, the phi-
losophy of this theorem is not hard to understand. The essence of this theorem lies in the
notion that each homotopy class is associated with an amplitude, denoted as €S, which can
be interpreted as a contribution. In simpler terms, the contribution corresponds to the signif-
icance of the class. Consequently, the total quantum amplitude is obtained by summing up
the amplitudes of all homotopy classes, each weighted according to its respective significance.

Sometimes the topological space may be abstract, another significant theorem provides
us with a method to move the path integral into the more concrete covering space.

Theorem 4.2. Lifting property of path integral
Let X denote the configuration space and be a topological space. The path integral over the
homotopy class o can be transferred to the covering space, yielding the relation

Kalag,ty; qisti] = K*[qF o0 t53 4 5 il

for some ¢f € p~(qi), qf o € p~(qs) corresponds to the lifted homotopy class of a with respect
to ¢, and K* denotes the path integral performed in the covering space.



Note that the lifted initial position ¢ may be not unique; we can choose the most conve-
nient one according to the problem.

Now, let’s explore the critical aspect: how to derive the amplitude A, as described in
Theorem 4.1. This theorem offers a robust solution, enhancing the power of Theorem 4.1.

Theorem 4.3. Amplitude theorem for path integral
Let X denote the configuration space and be a topological space. The probability amplitude
can be written as
Klaptrigntil = Y, e 7 Kalqp tr;qitil,
gemi(X,qr)

where ¢g € R is a factor depends on g € m (X, qr) and satisfies

Ghg = On + &g (modulo 2) for all g, h € (X, qf).

This theorem tells us that the amplitude in theorem 4.1 is nothing but a phase factor
e'?s . where ¢4 depends on g € m(X,qf). The relation in theorem 4.3 states that the map
m(X,qr) = R, g — ¢4 is a group homomorphism. That is, computing the amplitudes of
homotopy classes is a group representation problem. Note that because € = €™, the values
1 and 27 are equivalent for the phase factor ¢®. Hence, in the context of the theorem, we
consider the relation modulo 27. With the homomorphism provided by the theorem, one
can use the fundamental group to generate the phase factors and compute the probability
amplitude.

With these theorems, we can do the path integral in the space with nontrivial topology.
We will discuss some examples in the next section.

5 Application in Configuration Space with Finite Fundamen-
tal Groups

As theorem 4.3 asserts, computing the amplitudes of homotopy classes in configuration spaces
is analogous to solving a group representation problem. Given the well-developed nature of
representation theory for finite groups, we can utilize it to analyze both the topology of the
configuration space and the amplitudes associated with each homotopy class.

5.1 Exchanging Positions of Particles

Consider two classical identical particles in a d-dimensional independent real space R?, where
d = 3. In this section, we explore how their quantum state changes after exchanging positions.

First, we define the configuration space X. Since the space is independent, the absolute
positions of the particles are meaningless. Hence, the state of these particles is described by
the relative position r € R?. Since the particles are identical, we use the equivalence relation
r; ~ re if and only if r; = +ry. Hence, the configuration space is given by

X = (R = {0})/ ~ .
The fundamental group of the configuration space is

m(X) = Z/2Z,

10



indicating that particles evolve as time and turn back to their original state can occur through
paths in two homotopy classes, denoted 1 and ao. The physical interpretation of these classes
is as follows:

Applying theorem 4.1, the probability amplitude can be expressed as

K[I‘, tf; r, ti] = Adirect fp(m € 011) eiS(m;t) + Aexchange JD(m € OQ) eiS(m;t)’

the two homotopy classes mean that two particles turn back to their original relative position
and two particles exchange their relative position respectively. Shifting the path integral to the
universal covering space R% — {0} with the covering projection p : R? — {0} — (R? — {0})/ ~
, T — [r] = r. By the lifting properties, paths in the covering space start from points in
p~!(r) = {r,—r}. Thus, by theorem 4.2, the probability amplitude can be expressed as

K[I‘, tf; r, ti] = AdirectK* [I‘, tf; r, ti] + félexchangef(>x< [—I', tf; r, ti]v

where K* denotes the path integral performed in the covering space and we choose the lifted
r € p~!(r) be r. According to theorem 4.3, the amplitudes in the two homotopy classes
are Agirect = 1 and Aexchange = €' for some ¢ € R. Additionally, since ¢ need to satisfies
¢+ ¢ = 0, we know that ¢ € {0,7}. So the amplitude of particles exchanging positions is
e¢'® € {—1,1}. The exchange of particles results in two amplitudes: particles with amplitude
1 are called bosons, and those with amplitude —1 are called fermions.

5.2 Path Integral on 4-Manifolds with Finite Fundamental Groups

A 4-manifold is a mathematical space extending into four dimensions, offering a deeper explo-
ration of geometry and topology beyond our familiar three-dimensional world. 4-manifolds
are crucial in theoretical physics, influencing areas such as quantum field theory by offering
a richer context for understanding fundamental interactions and complex phenomena. 4-
manifolds are also significant in mathematics due to their interesting topological properties.
Here is a well-known theorem.

Theorem 5.1. For all finite groups, one can construct a smooth compact 4-manifold with
it as its fundamental group.

Constructing such a manifold is complex, so we will not delve into it here. However,
using this theorem, we can explore certain 4-manifolds with finitely presented fundamental
groups, revealing intriguing topology. By employing representation theory, we can determine
the number of possible phase factor changes as the state evolves and returns to its initial
state.

As an example, the group Z/4Z is finite, by theorem 5.1, we have a corresponding 4-
manifold M and can therefore consider the path integral on M. By theorem 4.3, the or-
dered collection of amplitudes of the homotopy classes (A7, A2, Az, A4) can be (1,1,1,1) or
(1,6”/ 2 gim edim/ 2). If there is a system where this 4-manifold serves as the configuration
space, two possibilities arise for the change in phase factor as the state evolves and returns
to its original state at the end.

11



6 Application in Configuration Space with Infinite Fundamen-
tal Group

As we discussed in theorem 4.3, computing amplitudes is the same as a group representation
problem. However, since the infinite group representation is still under development and
requires more advanced mathematics, we will just discuss a simple example here.

6.1 Particle on the d-dimensional Torus

Consider a particle move on a d-dimensional torus 7% Since the space that the particle is
in is 7¢ = (SY)? and the motion of a particle on the circle can be described by an angle
¢ € [0,27]/ ~, where a ~ b if and only if ab € {0, 27}, the configuration space is

X = ([0,2n]/ ~)%.

This space is a topological space equivalent to T, so by theorem 2.1 the fundamental group
of this space is
T (X ) = Zd.
Since the fundamental group of X is nothing but the direct product of w1 (S!), we can consider
the particle on S* first. By theorem 4.1 and theorem 4.3 the probability amplitude has the
form
Koy, ty; di ti] = Z e Knlpp.tys diti),
nez

where 6 € R. Now we compute the probability amplitude for each homotopy class K. In the
framework of complex mechanics, the action of the particle is

trq .

S=| ¢t

t; 2¢
The universal covering space is R equipped with the covering map p : R — [0,27), = —
T — 277[;] , where | ]g is the Gauss notation. By theorem 4.2, we can perform the path

w
G

integral in the more concrete covering space R. Recall what we have done in example 3.1, the
only difference is an additional term 27 led to by the covering map. Therefore, the probability
amplitude is

_ mo( L\ [iéy — i~ 2m)?
K[¢fvtfv¢i,ti]=7§€ <2m(tf—tz)> exp{ 2, — 21, ]
Now we can consider the particle on d-dimensional torus. We know that the fundamental
group of d-dimensional torus is

7T1(Td) = 7T1(Sl)d.
The same as what we discussed above, the probability amplitude of a particle on the d-
dimensional torus is

/2 d ‘ )
‘ 1 i(pry — by — 27)
K|®r te: D . t:| = i(n1O1+4ngbg) [~ i J
[@f,t5; @5, ti] = ) > e i) | [ exp T 7
ni1€Z Ng€L j=1

where ®; = (¢p1,- - ,br4), Pr = (Pi1, - ,¢iq) € X and the collection of angles {9]-}?:1 is
linear independent over Z.
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7 Summary

Topology, an essential branch of mathematics, provides a solid framework for investigating
path integrals in abstract spaces. Key concepts like homotopy, fundamental groups, and
covering spaces imbue topological spaces with algebraic structures, enabling analysis through
abstract algebraic theory. Theorems in homotopy theory further facilitate the application
of path integral methods to multiply-connected spaces, while group representation theory
supports their implementation.

In the domain of path integrals, a diverse range of topological structures awaits exploration
and study. These encompass familiar Euclidean spaces as well as more intricate configurations,
offering distinct insights into the dynamics of physical systems. For instance, the topological
properties of configuration spaces and manifold structures with nontrivial fundamental groups
can lead to unique phenomena.

By delving into the richness of topological concepts within quantum mechanics, researchers
deepen their understanding of fundamental principles and uncover novel avenues for theoreti-
cal exploration and discovery. Particularly, advancements in representation theory for infinite
groups contribute to a more comprehensive understanding of physics within the path integral
framework.

A Appendix

You can see the slide version on my website.
Link: https://kikiyenhaoyang.github.io/kikiyen/Web/ED.html.
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