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Preface

Modern theoretical mechanics constantly appeals to objects such as the Dirac delta,
impulse responses, and Green functions. In many standard courses these appear
as formal tools; the goal of this supplement is to put them on solid ground while
keeping the physics front and center. We develop just enough analysis—metric
and topological preliminaries, measures and distributions, Fourier analysis and
residues—to treat Green operators for common ODE and PDE models (oscillator,
Poisson, Helmholtz, and wave equations) in a way that is rigorous, concise, and
useful for calculations.

This is not a full text in analysis or PDE. It is a pragmatic bridge for students of
mechanics who want a coherent path from physical motivation to mathematically
sound statements. Throughout we emphasize:

• modeling assumptions and domains of validity,

• causality and retarded solutions,

• convolution algebra and impulse responses,

• distributional derivatives, and

• the interplay between time-domain intuition and frequency-domain techniques.

Scope and Learning Outcomes

After working through these notes, a reader should be able to:
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Preface

• formulate linear time-invariant systems and field equations using distributions;

• compute and interpret Green functions for standard ODE and PDE operators
with physical boundary or initial data;

• pass between time and frequency domains using the Fourier transform and
residue calculus in a controlled way;

• justify common manipulations with δ, Θ, and principal-value distributions;

• read more advanced texts on PDEs and field theory with less friction.

Prerequisites (Minimal)

Multivariable calculus, linear algebra, and an introductory ODE course. Helpful
but not required: basic complex analysis (Cauchy integral theorem), familiarity
with inner products and norms, and a first look at Lp spaces. Key reminders are
provided inline or as short appendices.

How to Use These Notes

First pass (physics-forward): Skim Section 1 (metric and topology essentials)
for vocabulary; read Section 2 on measures and distributions with examples;
then tackle Sections 3–4 on Fourier transforms, residues and Green operators;
finally return to any background you found unfamiliar.

Second pass (rigor upgrade): Revisit the measure and distribution definitions
and derivations, and work through the contour-integral derivation of a repre-
sentative Green function step by step.

vi



Each major section ends with short “checkpoints” highlighting common pitfalls
(e.g., multiplying distributions indiscriminately, confusing pointwise with weak
convergence).

Notation and Conventions

• Spaces: Rn with the Euclidean topology; S the Schwartz space; S ′ tempered
distributions; C∞

c smooth compactly supported functions.

• Operators: convolution f ∗ g; distributional derivative ∂α; pushforward of a
measure/distribution by a map Φ is Φ#µ.

• Special distributions: Dirac δ, Heaviside Θ, principal value p. v.(1/x).

• Fourier transform: f̂(ξ) =
´
Rn f(x)e

−2πix·ξ, dx (this sign convention is used
consistently unless stated otherwise).

• Topology: closure A, interior int(A), and boundary ∂A = A \ int(A).

• Flows: we denote a flow on a state space X by Φt : X → X (upper-case Φ is
used consistently).

Hsinchu, Taiwan, October 2025, Hao-Yang Yen
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Chapter

1

Mathematical Background

1.1 Metric Spaces

We must first make precise what it means for two initial conditions to be “close.”
In physical systems, this idea is intuitive: two pendulums starting from nearly
identical positions swing almost together at first but may soon diverge dramatically.
This sensitivity to initial conditions is one of the hallmarks of chaotic behavior.

However, to quantify this closeness and divergence, we need a mathematical notion
of distance on the state space. Without such a structure, phrases like “arbitrarily
close initial points” or “trajectories that eventually separate” are meaningless. The
appropriate formal tool is a metric, a function that assigns to every pair of states
a nonnegative real number representing their distance.

Introducing a metric allows us to translate intuitive physical notions—such as
nearby positions or similar velocities—into precise mathematical statements.
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Chapter 1 – Mathematical Background

Definition 1.1: Metric

A metric on a set X is a function d : X ×X → R satisfying:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) (symmetry).

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The pair (X, d) is called a metric space.

Example 1.1

• Euclidean metric: the function d : Rn × Rn → R, (x, y) = |x− y| is
certainly a metric.

• Discrete metric: for any set X, there always exists a metric called
discrete metric defined as d : X ×X → R,

d(x, y) =

1, if x ̸= y,

0, if x = y

• Norm: the norms defined in inner product spaces are metric.

Once a metric d is defined on the state space X, we can describe:

• what it means for two trajectories to approach or diverge;

• continuity of the flow φt with respect to initial conditions;

• and, ultimately, the notion of sensitive dependence on initial conditions.

In this way, the metric serves as the bridge between geometry and dynamics. It
allows us to measure how trajectories evolve relative to one another, making possible
a quantitative formulation of chaos. The following section introduces the concept
of a metric space, which provides this essential structure.
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1.1 Metric Spaces

1.1.1 Open and Closed Sets

Once a metric is defined, we can speak not only about the distance between two
points but also about the neighborhood of a point—those states that lie within a
certain distance from it. This idea is fundamental for describing continuity, stability,
and the local behavior of trajectories in a dynamical system.

In physics, we often reason about “nearby configurations” or “small perturbations”
of a state. For instance, when we say a system is stable under small disturbances,
we mean that if we slightly change the initial condition, the resulting trajectory
stays within a nearby region. Mathematically, such a “nearby region” is captured
by an open ball around a point in the metric space.

Definition 1.2: Open ball

Let (X, d) be a metric space. For x0 ∈ X and r > 0, the open ball of radius
r centered at x0 is defined as

Br(x0) = {x ∈ X : d(x, x0) < r}.

The collection of all open balls leads us to the concept of open sets, which formalize
the intuitive notion of regions without boundary points included.

Definition 1.3: Open set

Let (X, d) be a metric space. A set U ⊆ X is said to be open if for every
x ∈ U there exists r > 0 such that Br(x) ⊆ U .

The complements of open sets, the closed sets, represent regions that contain
their boundaries—important when studying invariant sets or attractors that trap
trajectories over time.
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Chapter 1 – Mathematical Background

Definition 1.4: Closed set

Let (X, d) be a metric space. A set C ⊆ X is said to be closed if its complement
X \ C is open.

Example 1.2

• The interval (a, b) ⊆ R is certainly open under the Euclidean metric.

Proof. For every x ∈ (a, b), there always exists r = min{|x−a|, |x− b|}/2
so that Br(x) = (x− r, x+ r) ⊆ (a, b).

• All sets are open under the discrete metric.

Proof. Let (X, d) be a metric space where d is the discrete metric and
U ⊆ X. For any x ∈ U , there always exists r = 1/2 so that Br(x) =

{x} ⊆ U .

1.1.2 Interior, Closure, and Boundary

With the notions of neighborhoods and open sets, we can now describe how a
set occupies space within a metric space. In physical terms, this corresponds to
distinguishing the bulk of a region—where the system can move freely without
approaching the edge—from its boundary, where the behavior changes qualita-
tively.

Definition 1.5: Interior

Let (X, d) be a metric space and A ⊆ X. The interior of A ⊆ X is

int(A) = {x ∈ A : ∃r > 0, Br(x) ⊆ A}.

4



1.1 Metric Spaces

Definition 1.6: Boundary

Let (X, d) be a metric space and A ⊆ X. The boundary of A is

∂A = A \ int(A).

For example, in phase space, a region of stable motion (such as an island of regular
trajectories in a mixed system) has an interior where trajectories remain confined,
while its boundary separates it from chaotic zones. The closure of a set includes all
points that can be approached by states within it, even if they are not themselves
inside the region—just as the edge of a potential well may be reached asymptotically
by nearby trajectories.

Definition 1.7: Closure

Let (X, d) be a metric space and A ⊆ X. The closure of A is

A = {x ∈ X : for all r > 0, Br(x) ∩ A ̸= ∅}.

These geometric ideas are not merely abstract. When we study chaotic systems,
we often encounter sets whose closure fills the entire phase space—meaning their
trajectories come arbitrarily close to every possible state. Such sets are said to be
dense, and they play a central role in the mathematical definition of chaos.

Definition 1.8: Dense Set

Let (X, d) be a metric space and A ⊆ X. A subset A ⊆ X is dense in X if
every point x ∈ X is either in A or arbitrarily close to a point of A:

A = X.

Example 1.3

• Rational numbers Q are dense in R.

• Periodic points can be dense in a chaotic map (e.g. logistic map).
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Chapter 1 – Mathematical Background

1.1.3 Continuity and Neighborhoods

The notions of open and closed sets allow us to describe how points and trajectories
behave locally within a metric space. In dynamical systems, this local structure
captures how small perturbations of an initial state affect its future evolution.

Definition 1.9: Neighborhood

Let (X, d) be a metric space and x0 ∈ X. A set U ⊆ X is called a neighbor-
hood of x0 if there exists r > 0 such that the open ball Br(x0) is contained in
U . In other words, U contains an entire region around x0.

Definition 1.10: Continuous map

Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is said to be
continuous at a point x0 ∈ X if for every ε > 0 there exists δ > 0 such that

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

The map f is continuous if it is continuous at every point x ∈ X.

Remark 1.1: Physical interpretation

Continuity expresses the idea that small changes in the initial state produce
small changes in the outcome. In mechanics, this corresponds to systems where
slightly different initial positions or velocities lead to nearby trajectories—at
least for short times. When this property fails, the system exhibits extreme
sensitivity to initial conditions, one of the signatures of chaos.

Example 1.4: Continuity of flows

If (X,Φt) is a dynamical system on a metric space, we usually assume that
for each fixed t, the map Φt : X → X is continuous. This ensures that the

6



1.2 Measure Theory and Generalized Functions

flow evolves states smoothly over time. For instance, in classical mechanics,
the flow generated by a smooth vector field F (x) is continuous with respect to
initial data.

The combination of metric and topological concepts—open sets, neighborhoods,
and continuity—provides the language for expressing local stability and sensitivity.
Later, when we define chaotic systems, these notions will allow us to state precisely
what it means for trajectories that start arbitrarily close to eventually separate by
a definite distance.

1.2
Measure Theory and Generalized Func-
tions

Having defined a notion of distance and continuity on the state space, we now turn
to the question of quantifying how much of the space is occupied by certain sets
or trajectories. In physics, this corresponds to measuring quantities such as total
mass, charge, or probability — objects that may be distributed continuously or
concentrated at single points. To describe both continuous and discrete distributions
within one unified framework, we require the language of measure theory.

Moreover, some physical quantities—like the Dirac delta appearing in point charges
or impulse forces—cannot be represented as ordinary functions. This motivates the
introduction of generalized functions (or distributions), which extends the notion
of function to include such singular objects.

7



Chapter 1 – Mathematical Background

1.2.1 Motivation

In classical mechanics, we usually describe motion by specifying the trajectory in
real space

x(t) ∈ Rn

of a particle as it evolves under the equation of motion

ẋ = f(x),

or, in Hamiltonian form,

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
.

Such a description is perfectly adequate when we can follow a single trajectory in
detail. However, many situations in physics—from statistical mechanics to chaotic
dynamics— require us to describe not just one trajectory but an entire ensemble
of possible states.

To move from individual trajectories to an ensemble description, we introduce a
density function

ρ(x, t) ∈ (0,∞) and
ˆ
Rn

ρ(x, t)dnx = 1

which tells us how the probability or “weight” of states is distributed in phase space.
Its time evolution is governed by the Liouville equation,

∂ρ

∂t
+∇·(fρ) = 0,

which expresses the local conservation of probability along the phase flow.

1.2.2 Dirac Measure as a Singular Distribution

When the system is known to be exactly at some point x0 ∈ Rn at time
t = 0, the corresponding initial density is not a smooth function but a sharply

8



1.2 Measure Theory and Generalized Functions

concentrated measure:

ρ(x, 0) = δ(x− x0),

the so-called Dirac delta measure. It is defined by its action on test functions
ϕ(x): ˆ

Rn

ϕ(x) δ(x− x0) d
nx = ϕ(x0).

Thus, the delta function should not be viewed as an ordinary function, but rather
as a measure that assigns unit weight to the single point x0.

Under the deterministic flow Φt(x0) generated by ẋ = f(x), this measure is simply
pushed forward:

ρ(x, t) = δ
(
x− Φt(x0)

)
.

In this way, the Dirac measure represents the evolution of a single trajectory within
the general measure-theoretic framework.

The same idea reappears in the study of linear dynamical systems. Consider, for
instance, the damped harmonic oscillator,

mẍ+ γẋ+ kx = f(t).

If we apply a unit impulse at t = 0,

f(t) = δ(t),

the resulting motion x(t) = G(t) defines the Green function (or impulse re-
sponse) of the system. For an arbitrary external force, the displacement is obtained
by superposition,

x(t) =

ˆ ∞

−∞
G(t− τ) f(τ) dτ = (G ∗ f)(t).

Hence, the delta measure plays a dual role: it represents both a localized initial
state in phase space and an idealized instantaneous force in time.

9



Chapter 1 – Mathematical Background

1.2.3 Dirac Delta and the Need for Generalized Functions

Point localization and impulse forcing appear ubiquitously in physics. A point
charge at x0, an impulse force at t = 0, or a perfectly sharp initial condition
are all modeled by the Dirac delta δ. Yet δ is not an ordinary function in any
Lp-space: it cannot be evaluated pointwise and has "infinite height and zero width".
This tension motivates a framework that extends functions to allow such singular
objects while retaining linearity and calculus rules. That framework is the theory
of generalized functions (distributions).

Definition 1.11: Dirac delta (via action on test functions)

Let ϕ ∈ C∞
c (Rn) be a smooth, compactly supported test function. The

Dirac delta at x0 ∈ Rn is the linear functional

⟨δx0 , ϕ⟩ := ϕ(x0).

More generally, a distribution on Rn is a continuous linear functional T :

C∞
c (Rn)→ R; we write ⟨T, ϕ⟩ for its action.

Ordinary locally integrable functions u ∈ L1
loc embed into this space by

⟨Tu, ϕ⟩ :=
ˆ
Rn

u(x)ϕ(x) dx,

so distributions strictly extend functions: δx0 has no L1 density, yet is a valid
distribution. Equivalently, δx0 is the unit point mass as a Radon measure: for
Borel A, δx0(A) = 1{x0∈A}.

Although it is not really a "function", we can still define the concepts of derivative
in the sense of distributions by considering how its derivative acts on a function.

10



1.2 Measure Theory and Generalized Functions

Definition 1.12: Distributional derivative

For a distribution T , its derivative DαT is defined by

⟨DαT, ϕ⟩ := (−1)|α| ⟨T,Dαϕ⟩, ϕ ∈ C∞
c .

The reason why we admit this definition is due to the partial integration. For
the Dirac delta function, we have

⟨δ′x0
, ϕ⟩ = −⟨δx0 , ϕ

′⟩ = −ϕ′(x0).

If we write it in a more "function-like" way, it will look like a partial integration:ˆ
Rn

δ′(x− x0)ϕ(x) dx = −
ˆ
Rn

δ(x− x0)ϕ′(x) dx = −ϕ′(x0),

notice that the reason why we require the δϕ term vanishes is that ϕ is compact
support.

Example 1.5: Heaviside step function

If Θ is the Heaviside step function (sometimes also denoted by H) on R defined
as

⟨Θ, ϕ⟩ =
ˆ ∞

0

ϕ(x) dx,

then H ′=δ0 in the distributional sense:

⟨Θ′, ϕ⟩ = −⟨Θ, ϕ′⟩ = −
ˆ ∞

0

ϕ′(x) dx = ϕ(0).

Remark 1.2: Basic calculus with δ

For smooth g with g′(x0) ̸= 0,

δ
(
g(x)

)
=

∑
g(xk)=0

δ(x− xk)
|g′(xk)|

, δ(ax) =
1

|a|
δ(x), a ̸= 0,

and δ acts as identity under convolution: (δ ∗ φ)(x) = φ(x). These rules are

11



Chapter 1 – Mathematical Background

rigorously justified within distribution theory.

Why distributions are needed (physics).

• Point localization. A perfectly known state x(0) = x0 corresponds to the
initial measure ρ0 = δx0 ; under the flow Φt, the pushforward is ρt = (Φt)#ρ0 =

δΦt(x0).

• Impulse forcing. In a linear time-invariant system Lx = f , a unit impulse
f(t) = δ(t) produces the Green function G, and general inputs act by
convolution x = G ∗ f .

• Jump conditions. Across interfaces, distributional derivatives encode jumps:
if u has a jump of size [u]x0 at x0, then u′ contains [u]x0 δx0 .

Distributions, measures, and densities. Distributions unify smooth den-
sities and singular masses in one linear space. Absolutely continuous measures
µ(dx) = ρ(x) dx act by ϕ 7→

´
ϕρ dx, while singular measures (e.g., point masses or

concentrated sources along submanifolds) are also distributions. This perspective
legitimizes “infinitely narrow pulses” as limits in the weak topology:

ηε ∗ u → u in distributions,

even when u is not an ordinary function.

Example 1.6: Delta transported by dynamics

Let ẋ = f(x) with flow Φt. Then, for any ϕ ∈ C∞
c ,〈

δ(x− Φt(x0)), ϕ
〉
= ϕ

(
Φt(x0)

)
,

so ρt = δ( · − Φt(x0)) solves the continuity equation ∂tρ+∇· (fρ) = 0 in the
distributional sense.

12



1.2 Measure Theory and Generalized Functions

Remark 1.3: Fourier viewpoint

On Rn, the Schwartz space S and its dual S ′ (tempered distributions) accom-
modate Fourier transforms of distributions:

δ̂x0(ξ) = e−iξ·x0 and D̂αT (ξ) = (iξ)αT̂ (ξ),

making δ indispensable in spectral and scattering analyses.

In summary, the Dirac delta compels us to enlarge the notion of “function” to
distributions: a linear, weak framework in which localization, impulses, and jumps
are handled rigorously, and which interfaces seamlessly with measures, Green
functions, and operator theory used throughout modern physics.

1.2.4 Metric and Convergence of Measures

The conceptual chain we have established can be summarized as

Trajectory −→ Density −→ Measure (δ) −→ Green Function.

This progression provides the bridge between the geometric view of dynamics and
the analytical tools of modern physics.

The Dirac delta is not an ordinary function in any familiar normed space. For
example, in the usual L1 or L2 norms, any sequence of normalized functions that
“concentrate” around a point fails to converge to a function within those spaces.
The reason is that in these metrics, the total variation between a narrow pulse and
the zero function remains of order one, no matter how narrow the pulse becomes.

To make sense of such limiting processes, we must adopt a weaker notion of
convergence. Instead of comparing functions pointwise or by norms, we compare
them through their action on test functions.

13



Chapter 1 – Mathematical Background

Definition 1.13: Weak convergence

Let {µn} be a sequence of measures on Rn, and let µ be another measure. We
say that µn converges weakly to µ if
ˆ
Rn

ϕ(x) dµn(x) −→
ˆ
Rn

ϕ(x) dµ(x) for all test functions ϕ ∈ Cc(Rn).

This notion of convergence can be metrized by, for example, the Kantorovich–Rubinstein
(or Wasserstein–1) metric:

d(µ1, µ2) = sup
|ϕ|Lip≤1

∣∣∣∣ˆ ϕ dµ1 −
ˆ
ϕ dµ2

∣∣∣∣ ,
where the supremum is taken over all Lipschitz test functions with unit Lipschitz
constant.

Example 1.7: Approximate identities and weak convergence

Let {ηε}ε>0 be an approximate identity: ηε ≥ 0,
´
ηε = 1, and supp ηε →

{0} as ε→ 0. Examples in one dimension include

ηε(x) =
1√
πε
e−x2/ε2 , ηε(x) =

1

π

ε

x2 + ε2
, ηε(x) =

1

2ε
1[−ε,ε](x).

Then, for any ϕ ∈ C∞
c ,
ˆ
ϕ(x) ηε(x− x0) dx −−→

ε→0
ϕ(x0),

i.e. ηε(· − x0) dx ⇀ δx0 weakly, not in Lp-norm.

Within this weaker topology, the delta measure naturally arises as a limit. Let
δε(x) be any sequence of smooth “approximate identities” satisfying

δε(x) ≥ 0,

ˆ
Rn

δε(x) dx = 1, supp(δε)→ {0} as ε→ 0.

Then the associated measures µε(dx) = δε(x) dx converge weakly to the Dirac
measure δ0: ˆ

Rn

ϕ(x) δε(x) dx −−→
ε→0

ϕ(0).

14



1.2 Measure Theory and Generalized Functions

In this sense, the delta function is not a limit in the metric of ordinary function
spaces, but a limit in the space of measures endowed with the weak topology.
This reinterpretation legitimizes the physicist’s manipulation of “infinitely narrow”
pulses, by viewing them as elements of a larger and better-behaved space.

1.2.5 Measure Theory as the Bridge to Distributions

The modern formulation of integration begins with the notion of a measure, a
systematic way to assign “size” or “volume” to subsets of Rn.

Definition 1.14: Measure Space

A measure space is a triple (X,A, µ) where A is a σ-algebra on X, and
µ : A → [0,∞] satisfies µ(∅) = 0 and countable additivity: if {Ak}∞k=1 ⊂ A
are pairwise disjoint, then

µ

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

Definition 1.15: Lebesgue Measure

For an interval I ⊂ R, define its length by

|I| =

b− a, if I ⊆ [a, b] for some a < b,

∞, otherwise (i.e., if I is unbounded).

To extend this notion to arbitrary sets A ⊂ R, cover A by a countable family
of open intervals {Ik}∞k=1 and define the outer measure

m∗(A) = inf

{
∞∑
k=1

|Ik|

∣∣∣∣∣ A ⊆
∞⋃
k=1

Ik, Ik open intervals

}
.

A set A ⊂ R is Lebesgue measurable if for every E ⊂ R,

m∗(E) = m∗(E ∩ A) +m∗(E \ A).
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Chapter 1 – Mathematical Background

Let L be the collection of all Lebesgue measurable sets. The restriction
m := m∗|L is the Lebesgue measure. The triple (R,L,m) is called the
Lebesgue measure space on R; it is complete, translation-invariant, and
extends length in the sense that m((a, b)) = b− a for all a < b.

Equipped with the Lebesgue measure space (R,L,m), we can obtain the Lebesgue
integral on R by applying the general definition of the integral with µ = m. In
particular, for any measurable f : R→ [−∞,∞],ˆ

R
f dm (often denoted

ˆ
R
f(x) dx)

is defined via simple functions and the supremum construction above; and f is
(Lebesgue) integrable if and only if

´
R |f | dm <∞.

Definition 1.16: Lebesgue Integral

Let (X,A, µ) be a measure space. A function of the form

ϕ =
n∑

i=1

ai 1Ei
,

where n ∈ N, ai ≥ 0, and the sets Ei ∈ A are pairwise disjoint, is called a
(nonnegative) simple function. Its integral is defined by

ˆ
X

ϕ dµ =
n∑

i=1

ai µ(Ei).

If f : X → [0,∞] is a measurable function, its Lebesgue integral is defined
asˆ
X

f dµ = sup

{ˆ
X

ϕ dµ

∣∣∣∣ ϕ a nonnegative simple function with 0 ≤ ϕ ≤ f

}
.

For a general real-valued measurable function f : X → R, define

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}.
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1.2 Measure Theory and Generalized Functions

Then |f | = f+ + f−. If
ˆ
X

|f | dµ <∞, i.e.,
ˆ
X

f+ dµ <∞ and
ˆ
X

f− dµ <∞,

we say that f is (Lebesgue) integrable, and define
ˆ
X

f dµ =

ˆ
X

f+ dµ−
ˆ
X

f− dµ.

Figure 1.1: The different approximation philosophies for the Riemann (left) and
Lebesgue (right) integral.

Unlike the Riemann integral, which partitions the domain, the Lebesgue integral
sums over levels of the function’s value (Fig. 1.1). It captures oscillatory or
discontinuous behavior more naturally.

Example 1.8

The function f(x) = sin(1/x)/x on (0, 1], with f(0) = 0, is not Riemann
integrable near x = 0, yet it is Lebesgue integrable because the total "mass"´ 1
0
|f(x)| dx is finite. Physically, the signal oscillates infinitely fast but still

carries finite energy.

Measures as generalized densities. Ordinary mass densities correspond to
absolutely continuous measures of the form ρ(x)dx, but physical systems often

17



Chapter 1 – Mathematical Background

contain discrete or singular components. A unit point mass at x0 is represented by
the Dirac measure

δx0(A) =

1, x0 ∈ A,

0, x0 /∈ A,
so that

ˆ
R
f(x) dδx0(x) = f(x0).

A periodic array of such point masses,

µ =
∑
n∈Z

δn,

defines the Dirac comb. Its Fourier transform is again a comb, illustrating the
duality between spatial periodicity and discrete frequencies.

From measures to distributions. Every finite measure µ defines a linear
functional on test functions ϕ ∈ C∞

c ,

Tµ[ϕ] =

ˆ
ϕ(x) dµ(x),

and thus can be regarded as a distribution. The Dirac delta δ is precisely the dis-
tribution induced by the Dirac measure. This identification clarifies the connection
between measure theory and the calculus of generalized functions.

Summary. Measure theory provides a unified language for both continuous and
discrete mass distributions. Lebesgue measure describes the uniform background,
Dirac-type measures capture localized structures, and weak convergence connects
the discrete and continuous viewpoints. These concepts form the conceptual bridge
leading to the theory of distributions, Fourier transforms, and Green functions
developed in the following sections.
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1.2 Measure Theory and Generalized Functions

1.2.6 Concentration and Flow

In dynamical systems, this language of measures provides a unified description of
both individual trajectories and statistical ensembles. A single trajectory corre-
sponds to a moving Dirac measure

ρt = δ(x− Φt(x0)),

while a distribution of initial conditions corresponds to a smooth density ρ(x, 0).
The time evolution of any such measure is expressed by the pushforward

ρt = (Φt)#ρ0, ρt(A) = ρ0
(
Φ−t(A)

)
.

Hence, in the language of measures, the dynamics is a flow on the space of
probability measures. The Dirac measure travels along the deterministic trajectory,
while smooth densities are transported and deformed according to the same flow.

This viewpoint will later allow us to interpret the Green function G(t, t′) as the
kernel of a linear propagator acting on measures, and to connect the response of a
system to perturbations with the geometry of its flow.

1.2.7 More Generalized Functions

The Dirac delta is only the simplest member of a large family of generalized
functions that extend the ordinary notion of a function while preserving linearity
and differentiation. Many of these objects arise naturally in physics whenever we
idealize sharply localized or discontinuous phenomena. Below, we summarize some
of the most common examples.
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Chapter 1 – Mathematical Background

Example 1.9: Heaviside step function

The Heaviside function is defined as

Θ(x) =

0, x < 0,

1, x > 0.

In distributional sense, its derivative is the Dirac delta:

dΘ

dx
= δ(x).

Physical meaning: a signal or potential that turns on instantaneously at x = 0,
such as the activation of a voltage step or a boundary condition switched at a
given time.

Example 1.10: Sign function

The sign function is defined by

sgn(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

Its derivative is a multiple of the delta function:

d

dx
sgn(x) = 2 δ(x).

Physical meaning: describes the direction or polarity of a field or force, and
appears in the derivative of the absolute value function, |x|′ = sgn(x).
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1.2 Measure Theory and Generalized Functions

Example 1.11: Principal value distribution

The Cauchy principal value p.v.(1/x) is defined by

〈
p.v. 1

x
, ϕ
〉
= lim

ϵ→0

ˆ
|x|>ϵ

ϕ(x)

x
dx.

This distribution captures the symmetric, finite part of the otherwise divergent
integral. Physical meaning: appears in Hilbert transforms, dispersion relations,
and the real part of propagators in quantum and wave theories.

Example 1.12: Derivatives of the delta function

The derivatives δ(n)(x) are defined by

⟨δ(n), ϕ⟩ = (−1)nϕ(n)(0).

These represent higher-order singular sources. Physical meaning: occur in
multipole expansions, for instance an electric dipole with moment p at the
origin has

ρ(r) = −p·∇δ(r).

Example 1.13: Dirac comb (periodic delta array)

The Dirac comb is a periodic distribution defined by

IIIT (x) =
∞∑

n=−∞

δ(x− nT ).

It is self-Fourier up to scaling:

F{IIIT (x)} =
2π

T
III2π/T (k).

Physical meaning: models equally spaced sampling in time or space, such as
crystal lattices, diffraction gratings, or pulse trains.
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Chapter 1 – Mathematical Background

Example 1.14: Surface and line deltas

For a surface S ⊂ R3 defined by g(r) = 0 with ∇g ≠ 0, the surface delta δS
is given by

ˆ
R3

ϕ(r) δS(r) d
3r =

ˆ
S

ϕ(r) dS =

ˆ
R3

ϕ(r) δ(g(r)) |∇g(r)| d3r.

Physical meaning: idealized surface or line sources, such as surface charge
densities ρ(r) = σ δS(r) or current filaments J(r) = I t̂ δL(r).

Example 1.15: Approximate identities

A family {ηε} of smooth functions satisfying

ηε ≥ 0,

ˆ
ηε = 1, supp(ηε)→ {0}

is called an approximate identity. Each ηε represents a normalized bump of
width ε, and in the limit ηε ⇀ δ weakly. Physical meaning: finite-width pulses
or Gaussian beams approaching an ideal point source.

Remark 1.4: Summary

Distribution Formal property Physical interpretation
δ(x) Localization,

´
δ = 1 Point source or impulse

Θ(x) H ′ = δ Sudden switch, step response
sgn(x) (sgn)′ = 2δ Direction or polarity
p.v. 1

x
Odd, singular at 0 Symmetric singular field

δ(n) (δ(n))′ = δ(n+1) Multipole moment source
IIIT (x) Periodic sum of δ’s Lattice or sampling structure
δS(r) Supported on a surface Surface (line) charge (current)

These examples illustrate how generalized functions unify discrete, continuous,
and singular descriptions within a single analytical framework.

22



1.3 Fourier Transforms of Generalized Functions

1.3
Fourier Transforms of Generalized Func-
tions

After knowing how and why the Green functions are useful, we now want to ask
"how to compute them?" Unfortunately, there is no general method to find them.
However, for the cases having translational symmetry the Fourier transform can
help us find most of them.

1.3.1 Schwartz Space and Tempered Distributions

The class of rapidly decreasing smooth functions, known as the Schwartz
space, provides the natural setting for Fourier analysis and for defining tempered
distributions.

Definition 1.17: Schwartz space

The Schwartz space S(Rn) consists of all C∞ functions f : Rn → C such
that for all multi-indices α, β,

sup
x∈Rn

|xα∂βf(x)| <∞.

Equivalently, every derivative of f decays faster than any power of 1/|x|:

|f(x)| = O(|x|−N) ∀N > 0.

The topology of S is defined by the family of seminorms

pα,β(f) = sup
x
|xα∂βf(x)|.

23



Chapter 1 – Mathematical Background

Definition 1.18: Tempered Distributions

The dual space of S, denoted S ′, is the space of tempered distributions.
An element T ∈ S ′ acts on f ∈ S by a continuous linear functional:

⟨T, f⟩ ∈ C.

Example 1.16

• Ordinary functions that grow at most polynomially (e.g. f(x) = x2);

• The Dirac delta and its derivatives;

• Principal value distributions such as p.v.(1/x).

Now, we can define the Fourier transform on S and S ′. The Fourier transform
preserves S:

F : S → S, f̂(k) =

ˆ
Rn

e−ik·xf(x) dx.

Consequently, it extends by duality to S ′:

⟨F [T ], f⟩ = ⟨T,F [f ]⟩.

This allows one to define Fourier transforms of distributions such as

F [δ](k) = 1, F [1](k) = 2πδ(k).

Remark 1.5

• S is dense in L2(Rn) and invariant under the Fourier transform.

• Tempered distributions are the natural setting for Green functions in
frequency space, since G(k) often behaves like a rational function rather
than an L1 function.
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1.3 Fourier Transforms of Generalized Functions

• Many propagators in physics are tempered distributions—e.g. the Feyn-
man propagator is defined through analytic continuation of a tempered
distribution.

The Fourier transform extends naturally to distributions. In fact, it often simplifies
their meaning: singular objects in real space become smooth (or oscillatory)
functions in frequency space, and vice versa. This duality between localization and
oscillation lies at the heart of wave mechanics, signal theory, and field propagation.

Definition 1.19: Fourier transform of a distribution

For a test function ϕ ∈ S(Rn), the Fourier transform of a distribution T ∈
S ′(Rn) is defined by duality:

⟨T̂ , ϕ⟩ = ⟨T, ϕ̂⟩, ϕ̂(k) =

ˆ
Rn

e−ik·xϕ(x) dx.

Thus every tempered distribution has a well-defined Fourier transform, and
the transform is again a tempered distribution.

Example 1.17: Dirac delta

F{δ(x− x0)} = e−ikx0 , F{δ(x)} = 1.

• Meaning: a point source in real space corresponds to a uniform am-
plitude in frequency space. This expresses the uncertainty principle
at the distributional level: perfect localization in x implies complete
delocalization in k.

Example 1.18: Constant function

F{1} = 2π δ(k).

25



Chapter 1 – Mathematical Background

• Meaning: a uniform field in real space corresponds to zero spatial
frequency; all its Fourier weight is concentrated at k = 0.

Example 1.19: Heaviside function

In one dimension,

F{Θ(x)} = πδ(k) +
1

ik
.

The appearance of the singular term p.v.(1/k) reflects the discontinuity of H.

• Meaning: a step in real space decomposes into an infinite superposition
of oscillations in k, with amplitudes decaying as 1/k.

Example 1.20: Principal value distribution

F
{
p.v.

1

x

}
= −iπ sgn(k).

• Meaning: the Hilbert transform is a ±90◦ phase shift in Fourier space,
embodying causality and analytic continuation (e.g. the Kramers–Kronig
relations in optics).

Example 1.21: Derivatives of the delta

For any integer n ≥ 0,
F{δ(n)(x)} = (ik)n.

• Meaning: differentiation in x corresponds to multiplication by ik in k, a
fundamental property used throughout quantum mechanics and spectral
theory.
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1.3 Fourier Transforms of Generalized Functions

Example 1.22: Gaussian and approximate identities

The normalized Gaussian

ηε(x) =
1√
2πε

e−x2/(2ε2)

has transform
η̂ε(k) = e−

1
2
ε2k2 .

As ε→ 0, ηε → δ, and correspondingly η̂ε → 1.

• Meaning: the delta arises as the limit of infinitely broad spectra— the
dual manifestation of an infinitely localized pulse.

Example 1.23: Dirac comb

F{IIIT (x)} =
2π

T
III2π/T (k).

• Meaning: periodicity in one domain corresponds to discrete sampling
in the dual domain. This is the mathematical foundation of diffraction
patterns and the Nyquist–Shannon sampling theorem.

Remark 1.6: Summary of key Fourier pairs

Distribution T (x) Transform T̂ (k) Comment
δ(x) 1 Point ↔ constant spectrum
1 2πδ(k) Uniform ↔ zero frequency
δ(n)(x) (ik)n Differentiation ↔ multiplication
Θ(x) πδ(k) + 1

ik
Step ↔ 1/k decay

p.v. 1
x

−iπ sgn(k) Causality phase shift
IIIT (x)

2π
T
III2π/T (k) Periodicity ↔ discreteness

These examples illustrate that the Fourier transform acts as a bridge between
localization and oscillation, connecting the analytic structure of generalized
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Chapter 1 – Mathematical Background

functions with their physical interpretation as signals, waves, and Green
functions.

Remark 1.7: Physical interpretation

In quantum and wave physics, the Fourier duality between x and k is the
correspondence between position and momentum, or between temporal and
spectral domains. Generalized functions like δ, Θ, and p.v.(1/x) therefore
embody idealized limiting cases of physical observables: perfect localization,
instantaneous onset, and causal response. This language prepares us for the
use of Green functions, where sources and responses are linked by the same
transform machinery.

1.3.2 Green Functions as Inverse Fourier Transforms

The Fourier-transform framework provides a powerful way to construct Green
functions explicitly. For linear differential operators with constant coefficients,
the Fourier transform converts differential equations into algebraic ones, so that
inversion becomes a simple division in frequency space. The corresponding Green
function then arises as the inverse Fourier transform of this algebraic inverse.

Definition 1.20: Green function via Fourier transform

Let L be a linear differential operator acting on functions of x ∈ Rn, and let
G(x) be its Green function defined by

LG(x) = δ(x).

Taking the Fourier transform of both sides gives

L̂ G(k) = δ̂(k) = 1.
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1.3 Fourier Transforms of Generalized Functions

Because differentiation in x corresponds to multiplication by ik in k, we obtain

L̂ G(k) = L(ik) Ĝ(k) = 1, so that Ĝ(k) =
1

L(ik)
.

Hence, the Green function in configuration space is

G(x) =
1

(2π)n

ˆ
Rn

eik·x

L(ik)
dnk,

interpreted as an inverse Fourier transform in the sense of distributions.

Example 1.24: Poisson equation in R3

Consider the Poisson equation for a potential field ϕ(r):

∇2ϕ(r) = −ρ(r),

whose Green function G(r) satisfies

∇2G(r) = −δ(r).

Taking the Fourier transform:

−(k2) Ĝ(k) = −1 =⇒ Ĝ(k) =
1

k2
.

Therefore,

G(r) =
1

(2π)3

ˆ
eik·r

k2
d3k =

1

4π|r|
.

Meaning: the Green function recovers the familiar 1/r Coulomb potential,
which expresses the influence of a point source in an isotropic medium.
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Example 1.25: Wave equation in one dimension

For the operator

L =
∂2

∂x2
− 1

c2
∂2

∂t2
,

the Green function G(x, t) satisfies

LG(x, t) = −δ(x) δ(t).

Fourier transforming in both x and t:

(−k2 + ω2/c2) Ĝ(k, ω) = −1, so that Ĝ(k, ω) =
1

k2 − (ω/c)2
.

The inverse transform gives

G(x, t) =
1

(2π)2

ˆ ˆ
ei(kx−ωt)

k2 − (ω/c)2
dk dω.

The proper choice of contour in ω (enforcing causality through ω → ω + iε)
selects the retarded or advanced Green function, corresponding to forward-
or backward-in-time propagation.

Remark 1.8: Physical interpretation

In the Fourier domain, the Green function Ĝ(k) acts as the response ampli-
tude of the system at frequency k, while in real space G(x) represents the
spatial or temporal propagation kernel. The inverse Fourier transform
connects these two views:

frequency response F−1

←−−→ spacetime propagation.

Thus the Green function bridges algebraic inversion and physical causality:
the denominator L(ik) encodes the dispersion relation, and its poles determine
the characteristic waves or modes of the system.
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1.3 Fourier Transforms of Generalized Functions

Example 1.26: General form of Green function for constant-
coefficient operator

For any linear PDE of the form

L(∂x)u(x) = f(x), L(∂x) =
∑
α

aα ∂
α
x ,

the solution is obtained by convolution:

u(x) = (G ∗ f)(x), G(x) =
1

(2π)n

ˆ
eik·x

L(ik)
dnk.

In particular:

• For L = ∂t+a ∂x (advection), G(x, t) = δ(x−at), representing translation
at velocity a.

• For L = ∂2t − c2∂2x (wave), G(x, t) is supported on the light cone |x| = c|t|.

• For L = ∇2 −m2 (Yukawa), G(r) = − e−m|r|

4π|r| .

Each case corresponds to a distinct physical propagation geometry.

Remark 1.9: Summary

• The Fourier transform converts differential operators to algebraic factors:
∂nx ↔ (ik)n.

• The Green function is obtained as the inverse Fourier transform of 1/L(ik).

• The poles of 1/L(ik) determine the system’s resonant or propagating
modes.

• Causality is enforced by the iε prescription, which shifts poles off the real
axis and selects the retarded solution.

This construction unifies the operator and distribution viewpoints: a Green
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function is simply the inverse of a differential operator, represented in either
physical or spectral space.

1.3.3 Poles, Dispersion, and Causality

The denominator L(ik) in the Fourier representation of a Green function encodes
the essential physical information of the system: its modes of oscillation, decay
rates, and causal structure. The analytic behavior of 1/L(ik) in the complex
frequency plane determines how disturbances propagate and how the Green function
behaves in time.

Definition 1.21: Poles of the Green function

Let Ĝ(k, ω) = [L(ik,−iω)]−1. A point (k0, ω0) where L(ik0,−iω0) = 0 is called
a pole or characteristic mode of the system. In the complex ω-plane, the
locations of these poles control the temporal behavior of the response.

Example 1.27: Simple harmonic oscillator

Consider the Green function of the damped oscillator:

mẍ+ γẋ+ kx = δ(t).

Fourier transforming in time:

(−mω2 + iγω + k) Ĝ(ω) = 1, Ĝ(ω) =
1

k −mω2 + iγω
.

The poles are at

ω± =
iγ

2m
±
√
ω2
0 −

γ2

4m2
, ω0 =

√
k/m.

Their imaginary parts determine the damping, and their real parts determine
the oscillation frequency. The inverse transform yields the familiar damped
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response

G(t) =
1

mωd

e−γt/(2m) sin(ωdt)Θ(t),

where ωd is the damped frequency. Physical meaning: each pole represents
an eigenmode of the system, and the Green function is their superposition
weighted by causal factors.

Example 1.28: Wave equation and dispersion relation

For the wave operator

L =
∂2

∂t2
− c2∇2, Ĝ(k, ω) =

1

−ω2 + c2k2
.

The poles occur at ω = ±ck, which define the dispersion relation. Each
Fourier component propagates with phase velocity vp = ω/k = c, and the
real-space Green function is supported on the light cone:

|r| = c|t|.

Physical meaning: the singularities in Ĝ specify the characteristic waves
permitted by the system.

Example 1.29: Causality and the iϵ prescription

In practice, the physical Green function must respect causality: no effect can
precede its cause. Mathematically, we enforce this by displacing the poles
slightly off the real axis:

Ĝret(ω) =
1

L(−iω + iε)
, ε > 0.

This ensures that the inverse Fourier transform vanishes for t < 0, producing
the retarded Green function. The opposite sign gives the advanced Green
function. Physical meaning: the infinitesimal imaginary shift encodes time
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ordering and guarantees that signals propagate only forward in time.

Example 1.30: Resonance and response amplitude

If a forcing term oscillates at frequency ωf , the steady-state response amplitude
is

|Ĝ(ωf )| =
1

|L(−iωf )|
.

When ωf approaches the real part of a pole, the amplitude grows sharply—this
is resonance. In damped systems the pole’s imaginary part prevents diver-
gence, yielding a finite peak width proportional to the decay rate. Physical
meaning: resonant peaks in Ĝ(ω) correspond to long-lived modes or quasi-
stationary states in the time domain.

Geometric viewpoint. Each pole of Ĝ corresponds to a solution of the char-
acteristic equation L(ik) = 0, defining the dispersion surface in (k, ω)-space.
The geometry of this surface determines the allowed propagation directions and
group velocities. For relativistic wave equations, it coincides with the light cone
ω2 = c2k2; for dispersive media, it deforms into more general forms, reflecting how
phase velocity varies with frequency.

From the analytic structure of Ĝ(k, ω) we can read off every essential physical
property of the system: causality, damping, resonance, and wave propagation.
Thus, in the Fourier domain,

Poles←→Modes,

Imaginary shifts←→ Causality,

Residues←→ Energy or amplitude.
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This spectral viewpoint completes the bridge between the operator formulation
of Green functions and their physical interpretation as propagators of signals and
fields.

1.3.4 The Residue Theorem and Contour Integration

The analytic structure of Ĝ(ω) in the complex ω-plane not only encodes causality
but also provides a practical method to evaluate the Green function in the time
domain. By contour integration and the residue theorem, we can compute inverse
Fourier transforms by summing over the contributions of the poles.

Definition 1.22: Inverse Fourier transform in time

For a one-dimensional system (or after spatial Fourier transform), the Green
function in time is given by

G(t) =
1

2π

ˆ +∞

−∞
Ĝ(ω) e−iωt dω.

If Ĝ(ω) extends analytically to the complex ω-plane with isolated poles, this
integral can be evaluated by closing the contour and applying the residue
theorem.

Example 1.31: Damped oscillator revisited

For the oscillator Green function

Ĝ(ω) =
1

m(ω2
0 − ω2 − iγω/m)

.

The poles are at ω± = ±ωd − iγ/(2m). To obtain the retarded Green
function, valid for t > 0, we close the contour in the lower half-plane (where
Imω < 0 so that e−iωt decays). By the residue theorem,

G(t) = 2πi
∑

poles in lower half-plane

Res
[
Ĝ(ω)e−iωt, ωp

]
.
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Carrying out the residues yields

G(t) =
1

mωd

e−γt/(2m) sin(ωdt)Θ(t),

which agrees with the time-domain solution derived earlier.

Example 1.32: Causal Green function for the wave operator

For the 1D wave equation,

Ĝ(k, ω) =
1

(ω + i0)2 − c2k2
.

Closing the contour in the lower half-plane for t > 0, the poles at ω = ±ck− i0
yield

G(k, t) =
sin(ckt)

ck
Θ(t).

Taking the inverse Fourier transform in k gives

G(x, t) =
1

2c
Θ(t) [δ(x− ct) + δ(x+ ct)],

which describes right- and left-moving signals at speed c. Physical meaning:
the contour integral automatically enforces the light-cone propagation dictated
by causality.

Remark 1.10: Contour choice and causality

• For t > 0 (retarded case), close the contour in the lower half-plane.

• For t < 0 (advanced case), close it in the upper half-plane.

• The small imaginary shift ω → ω+iϵ selects which set of poles contributes.
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Geometrically, the contour choice corresponds to time-ordering of cause and
effect. In quantum field theory, this is the origin of the Feynman propagator :

GF (t) =
1

2π

ˆ +∞

−∞

e−iωt

ω2 − ω2
0 + iε

dω,

where the poles are symmetrically displaced to ensure both causal directions
are included under time ordering.

Example 1.33: Feynman propagator in frequency space

The contour prescription can be visualized as

1

ω2 − ω2
0 + iε

= P
(

1

ω2 − ω2
0

)
− iπ[δ(ω − ω0) + δ(ω + ω0)],

which separates the propagator into a principal value (dispersive) and a
delta (absorptive) part. This decomposition reflects the division between
real and imaginary response, or equivalently between energy storage and
energy dissipation.

Example 1.34: Wick rotation

In many applications—particularly in quantum field theory and statistical
mechanics—one deforms the time contour to imaginary time via the Wick
rotation

t→ −iτ, ω → iωE.

Then
GE(τ) =

1

2π

ˆ
eiωEτ

ω2
E + ω2

0

dωE,

which is exponentially decaying rather than oscillatory.

• Physical meaning: this transforms the Lorentzian propagator into
an Euclidean Green function, suitable for equilibrium or statistical for-
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mulations, and forms the basis of path-integral methods in imaginary
time.

Remark 1.11: Summary of the residue method

1. Identify the poles of Ĝ(ω) in the complex plane.

2. Choose a contour consistent with the desired causality (t > 0 or t < 0).

3. Evaluate the residues at enclosed poles.

4. Sum the contributions and multiply by 2πi.

This simple geometric rule in the complex plane translates directly into physi-
cally meaningful propagation in spacetime.

Physical interpretation. Each pole represents a mode that contributes an
exponential or oscillatory term e−iωpt in time. The contour integral selects which
modes can propagate according to causality. In dissipative systems, poles below the
real axis correspond to decaying signals; in unstable ones, poles above correspond to
growth. The residue theorem thus provides both a computational and a conceptual
bridge between complex analysis and physical propagation.

Contour integration turns the inversion of operators into geometry: causal propa-
gation follows from which poles lie inside a chosen half-plane. The small shift iε
determines direction of time, and Wick rotation connects dynamical propagation
with statistical equilibrium. Through the residue theorem, the abstract analytic
structure of Ĝ(ω) becomes a vivid picture of waves, damping, and causality in the
complex plane.
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Chapter

2

Green Operators in Mechanics
and Field Theory

The concepts developed in the preceding chapters— delta measures, Green functions,
and variational principles— find direct and powerful applications in mechanics and
field theory. In this chapter we show how Green operators describe the propagation
of disturbances in continuous media, the oscillations of discrete mechanical systems,
and the response of relativistic fields.

2.1
Green Functions as Propagators on the
Space of Measures

The Green function is a central concept in both analysis and physics. It represents
the fundamental response of a linear system to a localized source. Within the
measure-theoretic view of dynamics, a Green function can be interpreted as the
propagator that transports an infinitesimal perturbation or measure from one point
in time to another.
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Chapter 2 – Green Operators in Mechanics and Field Theory

2.1.1 Green Functions in Dynamical Systems

We introduce the concept of the Green function from the linearized dynamics.

Consider a general (possibly nonlinear) dynamical system

ẋ = f(x),∈ Rn,

and let Φt(x0) denote its flow map, so that x(t) = Φt(x0). A small perturbation ξ(t)
around a reference trajectory x0(t) satisfies the linearized (variational) equation

ξ̇(t) = Df(x0(t)) ξ(t) + η(t),

where Df is the Jacobian matrix of f , and η(t) represents a small external forcing.

The associated Green function G(t, t′) is the matrix-valued kernel that satisfies

d

dt
G(t, t′) = Df(x0(t))G(t, t

′), G(t′, t′) = I,

where I is the identity matrix. Formally, this Green function is the derivative of
the flow map:

G(t, t′) = DΦt,t′(x0) =
∂Φt(x0)

∂x0
.

For any forcing term η(t), the perturbation can be expressed as

ξ(t) =

ˆ t

t0

G(t, t′) η(t′) dt′.

In particular, a delta impulse at t = t1,

η(t) = δ(t− t1) η0,

produces the response
ξ(t) = G(t, t1) η0.

Thus, G(t, t′) propagates an instantaneous disturbance forward in time.
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2.1.2 Green Function as a Propagator on Measures

From the perspective of measures, consider a family of probability measures ρt that
evolve according to the flow:

ρt = (Φt)#ρ0.

If the initial measure is a single Dirac mass ρ0 = δ(x− x0), then

ρt = δ(x− Φt(x0)).

A small variation of the initial point x0 7→ x0 + ϵξ0 induces a variation of the
measure given to the first order by

δρt = −∇ ·
(
G(t, 0) ξ0 δ(x− Φt(x0))

)
.

Hence, the Green function not only propagates perturbations of state vectors,
but also describes how infinitesimal deformations of measures evolve under the
deterministic flow.

2.1.3 Connection to Physical Response

In the context of linear physical systems, the Green function G(t, t′) plays the
role of the impulse response function. It relates an external force f(t) to the
system’s displacement:

x(t) =

ˆ t

−∞
G(t, t′) f(t′) dt′.

From a dynamical viewpoint, this convolution integral is the continuous analogue
of the pushforward of measures: each infinitesimal “impulse” of input at time t′ is
transported forward by the propagator G(t, t′).

Therefore, the measure-theoretic and the dynamical-system perspectives merge
naturally:
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Chapter 2 – Green Operators in Mechanics and Field Theory

the Dirac delta represents localization in space or time, while the Green
function represents the deterministic flow of that localization.

This interpretation provides the conceptual foundation for later chapters, where we
will use Green functions to analyze both temporal evolution (via convolution) and
spatial propagation (in the study of differential operators and fields).

2.2 Green Functions in Linear Systems

2.2.1 The Discrete Oscillator Chain

Consider a one-dimensional chain of N identical masses m connected by springs of
stiffness k. Let xi(t) denote the displacement of the i-th mass from equilibrium.
The equations of motion are

mẍi + k(2xi − xi+1 − xi−1) = fi(t), i = 1, . . . , N,

with appropriate boundary conditions (e.g., fixed ends). In matrix form this reads

M ẍ+Kx = f(t),

where M = mI and K is the tridiagonal stiffness matrix.

The Green function Gij(t− t′) satisfies

MG̈ij(t− t′) +KGij(t− t′) = δij δ(t− t′),

and the solution for any driving force is

xi(t) =
∑
j

ˆ
Gij(t− t′) fj(t′) dt′.
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2.3 Green Functions in Spacetime and Wave Propagation

Diagonalizing the stiffness matrix, K = SΛS−1, with eigenvalues λα = mω2
α and

normal modes Sαi, we obtain

Gij(t) =
∑
α

SαiSαj

mωα

sin(ωαt)Θ(t),

a discrete analog of the continuous Green function for the wave equation. This
explicitly shows that Gij is the propagator of mechanical influence through the
coupled system.

2.2.2 Continuum Limit and the Wave Equation

Letting the lattice spacing a → 0 and defining xi(t) → u(x, t), the difference
operator becomes the spatial derivative, and the discrete equation tends to

ρ
∂2u

∂t2
− T ∂

2u

∂x2
= f(x, t),

where ρ is the mass density and T the tension. This is the one-dimensional wave
equation. The corresponding Green function satisfies(

∂2

∂x2
− 1

c2
∂2

∂t2

)
G(x, t;x′, t′) = − 1

T
δ(x− x′) δ(t− t′), c =

√
T/ρ.

In analogy with the spacetime formulation, the retarded solution is

G(x, t;x′, t′) =
1

2ρc
Θ

(
t− t′ − |x− x

′|
c

)
,

representing the causal propagation of mechanical disturbances along the string.

2.3
Green Functions in Spacetime and Wave
Propagation

The Green function formalism reaches its full power when applied to wave phenom-
ena, where both space and time are involved. In this context, the Green function
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Chapter 2 – Green Operators in Mechanics and Field Theory

encodes how a localized disturbance at a spacetime point (r′, t′) propagates through
space and time according to a wave equation. The interplay of causality, propagation
speed, and boundary conditions determines its precise form.

2.3.1 The Wave Equation

Consider the scalar wave equation in three-dimensional space:(
∇2 − 1

c2
∂2

∂t2

)
u(r, t) = −s(r, t),

where u(r, t) represents a field (such as the acoustic or electromagnetic potential) and
s(r, t) represents a source distribution. The associated Green function G(r, t; r′, t′)
is defined by (

∇2 − 1

c2
∂2

∂t2

)
G(r, t; r′, t′) = −δ(r− r′) δ(t− t′).

Once G is known, the field can be obtained by superposition:

u(r, t) =

ˆ ˆ
G(r, t; r′, t′) s(r′, t′) d3r′ dt′.

2.3.2 Causality and the Retarded Green Function

Because waves cannot propagate instantaneously, the physically meaningful solution
must satisfy causality: a disturbance at time t′ can only influence later times t > t′.
This condition selects the retarded Green function, which vanishes for t < t′.

In free space, the retarded solution is

Gret(r, t; r
′, t′) =

δ
(
t− t′ − |r−r′|

c

)
4π|r− r′|

Θ(t− t′),

where Θ is the Heaviside step function. This expression states that a signal emitted
from r′ at time t′ arrives at r precisely after the travel time |r− r′|/c.
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2.3 Green Functions in Spacetime and Wave Propagation

Similarly, the advanced Green function, nonzero only for t < t′, is given by

Gadv(r, t; r
′, t′) =

δ
(
t′ − t− |r−r′|

c

)
4π|r− r′|

Θ(t′ − t).

In physical applications, we usually select the retarded Green function, correspond-
ing to forward-in-time propagation.

2.3.3 Frequency-Domain Representation

Taking the temporal Fourier transform,

Ĝ(r, r′;ω) =

ˆ ∞

−∞
G(r, t; r′, t′) eiω(t−t′) d(t− t′) ,

we obtain the Helmholtz equation(
∇2 + k2

)
Ĝ(r, r′;ω) = −δ(r− r′), k =

ω

c
.

The outgoing-wave (retarded) solution in free space is

Ĝ(r, r′;ω) =
eik|r−r′|

4π|r− r′|
.

Inverse transforming with respect to ω recovers the retarded time-domain function
above. Thus, the frequency-domain Green function represents the steady-state
spatial response at frequency ω, while the time-domain version encodes causal
propagation.

Remark 2.1: Geometric interpretation

The delta function in time localizes the source in the temporal coordinate,
and the Green function spreads this localization along the light cone of the
spacetime metric:

|r− r′| = c(t− t′).
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Hence, the Green function is concentrated on the surface of constant prop-
agation time between source and observer. In relativistic notation, the
d’Alembertian operator

□ =
1

c2
∂2

∂t2
−∇2

acts on Minkowski spacetime, and the equation

□G(x, x′) = δ(4)(x− x′)

defines the fundamental solution whose support lies on the light cone. The re-
tarded and advanced solutions correspond to causal and anti-causal propagation
along that cone.

Remark 2.2: Physical meaning

The spacetime Green function expresses a universal physical principle: local
causes produce effects that propagate continuously and causally
through the geometry of space and time. In this sense,

• the delta function represents a localized event in spacetime;

• the Green function represents the propagation of that event’s influence;

• the operator L (or □) encodes the geometry and medium through which
propagation occurs.

This completes the transition from discrete trajectories and temporal impulses to
continuous fields and spacetime propagation. The following chapters will extend
these ideas to Green functions in general linear operators, Green’s identities, and
the variational formulations that connect them to the principles of mechanics and
field theory.
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Example 2.1: Volume Change and Invariant Densities

Consider ẋ = Ax with flow Φt = etA. Then detDΦt = etTrA and

ρt(y) = ρ0
(
e−tAy

)
e−tTrA.

Hence Lebesgue measure is invariant iff TrA = 0. For Hamiltonian flows, the
symplectic structure implies TrA = 0 along trajectories, so Liouville measure
is invariant.

2.4 Boundary Value Problems

In many physical systems, differential equations are accompanied not only by
source terms but also by boundary conditions that specify the behavior of the
field at the edge of the domain. The role of the Green function is to encode both
the differential operator and the boundary conditions, thus fully determining the
solution.

2.4.1 General Formulation

Consider a linear differential operator L acting on u(r) over a domain Ω, with
boundary ∂Ω:

Lu(r) = f(r), r ∈ Ω.

The boundary conditions are expressed through a linear operator B:

B u(r) = g(r), r ∈ ∂Ω.

There are three usual boundary conditions:

• Dirichlet condition: u|∂Ω = gD. The value of the function is prescribed on
the boundary.
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• Neumann condition: ∂nu|∂Ω = gN . The normal derivative is specified
instead.

• Mixed (Robin) condition: αu+ β ∂nu = gR. Linear combination of both.

The Green function G(r, r′) satisfies

LG(r, r′) = δ(r− r′)

with boundary condition

BG(r, r′) = 0, r ∈ ∂Ω.

The solution of the boundary value problem can then be written as

u(r) =

ˆ
Ω

G(r, r′)f(r′) d3r′ +

ˆ
∂Ω

[
G(r, r′)

∂u

∂n′ − u(r
′)
∂G

∂n′

]
dS′.

The second integral ensures that the boundary condition is properly enforced.

Example 2.2: Poisson Equation in a Half-Space

Let us solve
∇2ϕ = −ρ(r)

ε0
, z > 0,

with Dirichlet boundary condition ϕ(x, y, 0) = 0.
We can construct the Green function by the method of images :

G(r, r′) =
1

4π|r− r′|
− 1

4π|r− r′′|
, r′′ = (x′, y′,−z′).

The second term represents the potential of an image charge located below
the plane, ensuring G = 0 on z = 0.
Then

ϕ(r) =
1

ε0

ˆ
z′>0

G(r, r′)ρ(r′) d3r′.
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Remark 2.3

• The boundary term in the integral representation determines whether we
are enforcing Dirichlet or Neumann conditions.

• For time-dependent equations (e.g. wave or diffusion), similar construc-
tions apply but require causal or retarded Green functions.

• The method of images is valid for simple geometries where a mirror sym-
metry exists; for more general shapes, one must construct G numerically
or by eigenfunction expansion.

2.4.2 Method of Images from the Green Functions

The method of images can be interpreted as the construction of a Green function
that satisfies a prescribed boundary condition. Instead of introducing image charges
by intuition, we can see them as mathematical terms ensuring that the Green
function vanishes (or satisfies the desired derivative condition) on the boundary.

Green function for a half-space conductor

For a grounded conducting plane at z = 0, the boundary condition is

G(r, r′) = 0 for z = 0.

We look for G satisfying

∇2G(r, r′) = −δ(r− r′).

In free space, the fundamental solution is

G0(r, r
′) =

1

4π|r− r′|
.
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To impose the boundary condition, we can modify G0 by adding a suitable homo-
geneous solution of Laplace’s equation:

G(r, r′) = G0(r, r
′) +Gh(r, r

′), ∇2Gh = 0.

We require G(x, y, 0; r′) = 0. A simple choice is

Gh(r, r
′) = − 1

4π|r− r′′|
, r′′ = (x′, y′,−z′).

Then
G(r, r′) =

1

4π|r− r′|
− 1

4π|r− r′′|
.

This is precisely the Green function for the Dirichlet boundary condition in the
half-space.

Remark 2.4: Interpretation as an image source

The second term corresponds to an image source located at the mirror point
r′′ with opposite sign. When used in Poisson’s equation,

∇2ϕ = − ρ

ε0
, ϕ|z=0 = 0,

the solution becomes

ϕ(r) =
1

ε0

ˆ
z′>0

G(r, r′) ρ(r′) d3r′.

The image term ensures that the potential vanishes on the boundary for any
charge distribution in z > 0. Thus, the image charge is nothing more than a
manifestation of the boundary-adapted Green function.

Remark 2.5: Other boundary conditions

Analogously, for a Neumann boundary condition ∂nG = 0 on z = 0, the
appropriate Green function is obtained by adding instead of subtracting the
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2.4 Boundary Value Problems

image term:

GN(r, r
′) =

1

4π|r− r′|
+

1

4π|r− r′′|
.

This corresponds to an image of the same sign.

From the Green function perspective, the method of images is a constructive way
to find a Green function that satisfies the correct boundary conditions:

Find G = G0 +Gh such that LG = δ, BG = 0 on ∂Ω.

Whenever the geometry is simple enough to guess an analytic Gh, the image method
provides a fast and physically transparent solution.

The heat equation in a half-space

The image construction also appears naturally in time-dependent diffusion or heat-
conduction problems. Consider the one-dimensional heat equation on the half-line
x > 0:

∂u

∂t
− κ ∂

2u

∂x2
= 0, u(0, t) = 0, u(x, 0) = f(x).

The free-space Green function (heat kernel) satisfies(
∂

∂t
− κ∇2

)
G0(x, t;x

′, t′) = δ(x− x′) δ(t− t′),

and is given by

G0(x, t;x
′, t′) =

Θ(t− t′)√
4πκ(t− t′)

exp

[
− (x− x′)2

4κ(t− t′)

]
.

To enforce the Dirichlet boundary condition u(0, t) = 0, we add a homogeneous
(boundary-correcting) term Gh so that G = G0 + Gh satisfies G(0, t;x′, t′) = 0.
Choosing

Gh(x, t;x
′, t′) = −G0(x, t;−x′, t′),
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we obtain

G(x, t;x′, t′) =
Θ(t− t′)√
4πκ(t− t′)

[
exp

(
− (x− x′)2

4κ(t− t′)

)
− exp

(
− (x+ x′)2

4κ(t− t′)

)]
.

This Green function is equivalent to introducing an image heat source of opposite
sign located at the mirror point −x′. It automatically enforces u(0, t) = 0 for all
t > t′.

The solution is therefore

u(x, t) =

ˆ ∞

0

G(x, t;x′, 0) f(x′) dx′.

Physically, the image term represents the “heat deficit” needed to cancel any flux
crossing the insulated or grounded boundary.

Remark 2.6

• The structure of G is parallel to the electrostatic image potential: both
are obtained by adding a mirror source with appropriate sign.

• For Neumann boundary conditions ∂xu|x=0 = 0, the Green function is
obtained by adding the image term instead of subtracting it.

• This technique generalizes to other linear PDEs—diffusion, sound, elas-
ticity—whenever the domain possesses reflection symmetry.

For Neumann boundary conditions, the normal derivative of the field is specified
on the boundary, rather than its value:

∂u

∂n

∣∣∣∣∣
∂Ω

= gN .

From the Green function perspective, we now require

∂G

∂n

∣∣∣∣∣
∂Ω

= 0.
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In the half-space geometry with boundary z = 0, the corresponding Green function
can again be built by adding a homogeneous solution:

GN(r, r
′) =

1

4π|r− r′|
+

1

4π|r− r′′|
, r′′ = (x′, y′,−z′).

This “same-sign” image ensures that the normal derivative vanishes at the plane:

∂GN

∂z

∣∣∣∣
z=0

= 0.

Neumann boundary conditions. The Neumann condition corresponds physi-
cally to an insulated boundary (no flux) in diffusion, or to a perfectly reflecting
surface for waves. For an arbitrary source f(r′), the solution reads

u(r) =

ˆ
Ω

GN(r, r
′)f(r′) d3r′,

which guarantees ∂nu = 0 on z = 0.

In the Dirichlet case, we subtract the image, enforcing u = 0. In the Neumann
case we add the image, enforcing ∂nu = 0. These two constructions are the simplest
illustrations of how Green functions encode different boundary operators.

Spherical boundary. Consider now Laplace’s equation outside a grounded
conducting sphere of radius a:

∇2ϕ = 0, ϕ|r=a = 0,

with a point charge q located at r0 (|r0| > a). We seek a Green function that
vanishes on the spherical boundary.

The Green function satisfying the Dirichlet condition can be constructed as

G(r, r0) =
1

4π|r− r0|
− a/r0

4π|r− (a2/r20)r0|
.
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The second term represents an image charge

q′ = − q a
r0
, r′0 =

a2

r20
r0,

located inside the sphere. This choice guarantees G(a, θ) = 0 for all angles.

In terms of the Green function formalism, we can verify

∇2G = −δ(r− r0), G|r=a = 0.

Thus the potential in the region r > a due to an arbitrary charge density ρ is

ϕ(r) =
1

ε0

ˆ
r′>a

G(r, r′)ρ(r′) d3r′,

and the induced surface charge on the sphere follows from −ε0∂rϕ|r=a.

Remark 2.7

• The spherical image method corresponds mathematically to constructing
the Green function with respect to a Kelvin transformation r 7→ a2/r.

• For Neumann conditions on the sphere, the image charge changes sign
and magnitude, adjusted to make ∂rG = 0 at r = a.

• Both planar and spherical cases illustrate the general rule:

G = G0 +Gh,

Gh = −G0(reflected) Dirichlet,

Gh = +G0(reflected) Neumann.

2.5 Field Theoretic Interpretation

Many field equations of physics derive from an action principle

S[ϕ] =

ˆ
L(ϕ, ∂µϕ) d4x,
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where L is the Lagrangian density. The Euler–Lagrange equation for the field ϕ(x)
is

∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= J(x),

where J(x) is an external source. Linearizing around a background configuration
yields a linear operator L acting on ϕ:

Lϕ(x) = J(x).

The Green function satisfies

LG(x, x′) = δ(4)(x− x′),

and the field solution follows as

ϕ(x) =

ˆ
G(x, x′) J(x′) d4x′.

Hence, the Green function is the kernel of the inverse operator L−1 that maps
sources to fields.

Example 2.3: The Klein–Gordon field

For the scalar field with Lagrangian

L =
1

2

(
∂µϕ ∂

µϕ−m2ϕ2
)
+ Jϕ,

the equation of motion is

(□+m2)ϕ(x) = J(x),

where □ = 1
c2

∂2

∂t2
−∇2. The Green function satisfies

(□+m2)G(x, x′) = δ(4)(x− x′).

Fourier transforming,

G̃(k) =
1

k2 −m2 + iε
,
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where the infinitesimal term iε specifies the causal (retarded or Feynman)
prescription. The corresponding spacetime Green function represents the
propagation amplitude of a scalar excitation of mass m from point x′ to x.
In quantum field theory, this same object becomes the two-point correlation
function ⟨0|T{ϕ(x)ϕ(x′)}|0⟩.

The Green operator thus plays a universal role:

• In mechanics, it describes the temporal response of oscillators and continuous
media to impulses and forces.

• In field theory, it represents the propagation kernel relating sources and
fields across spacetime.

• In variational mechanics, it is the kernel of the operator obtained by
extremizing the action.

From the delta measure that localizes an event to the Green function that propa-
gates its influence, the same mathematical structure underlies both classical and
relativistic dynamics.
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3

Operator Methods and the
Functional Viewpoint

Up to this point we have treated the Green function as an integral kernel relating
sources and responses. We now adopt a more abstract but unifying perspective:
the Green function is the integral kernel of an inverse operator acting on a function
space. This operator approach provides the foundation for quantum mechanics,
spectral theory, and functional analysis.

3.1 Linear Operators and Their Inverses

Let L be a linear operator acting on a Hilbert space H of square-integrable
functions,

L : H → H, Lf = g.

If L is invertible, its inverse L−1 satisfies

L−1L = LL−1 = I.
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When L is a differential operator, L−1 can be represented by an integral kernel
G(x, x′):

(L−1f)(x) =

ˆ
G(x, x′) f(x′) dx′.

Applying L to both sides gives

LG(x, x′) = δ(x− x′),

which is precisely the defining relation of the Green function. Thus, the Green
function is the coordinate representation of the inverse operator L−1.

Remark 3.1

Sometimes, the Green functions may be written as the "inverse of the operator"

L−1 = G(x, x′).

Strictly speaking, this is incorrect since Green functions are the "kernels" of
the inverses, but it is still quite common.

Distributional Kernels and the Schwartz Space. Many operator kernels are
not ordinary functions but distributions, i.e., the Green functions can themselves
be distributions but not functions. For example,

1

4π|r− r′|
and

δ
(
t− t′ − |r−r′|

c

)
4π|r− r′|

Θ(t− t′),

which are the Green functions for the Laplacian and the d’Alenbert operator,
respectively.

More generally, operators acting on the Schwartz space S(Rn) have kernels in the
dual space S ′, the tempered distributions. This framework provides a rigorous
justification for Fourier transforms, contour integrals, and δ-function manipulations
used throughout physics.
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Bounded and Unbounded Operators. Most physically relevant operators,
especially differential ones, are unbounded : their norm ∥Lf∥ can grow arbitrarily
large even if ∥f∥ = 1. Hence, specifying the domain D(L) ⊂ H is essential.

Example 3.1: Momentum and Hamiltonian operators

The momentum operator p̂ = −iℏ ∂x is symmetric on smooth compactly
supported functions, but becomes truly self-adjoint only after fixing boundary
conditions (e.g. vanishing at infinity or periodic). Self-adjointness guarantees
the spectral theorem and ensures that e−iLt is unitary, corresponding physically
to probability conservation.

Self-adjointness is therefore not merely a mathematical nicety but a statement of
physical consistency.

Example 3.2: Poisson’s equation and the Laplace operator

In electrostatics, the potential ϕ(r) due to a charge density ρ(r) satisfies

Lϕ = −∇2ϕ =
ρ

ε0
.

The operator L = −∇2 is the Laplacian on R3. Formally,

ϕ(r) = L−1ρ =

ˆ
G(r, r′) ρ(r′) d3r′,

where
G(r, r′) =

1

4π|r− r′|
is the Green function of the Laplace operator. Thus, the Coulomb potential is
the kernel of the inverse Laplacian.
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Example 3.3: Wave operator and the retarded Green function

For wave propagation in free space,

L = □ =
1

c2
∂2t −∇2, LG = δ(r− r′) δ(t− t′).

The causal (retarded) Green function is

Gret(r, t; r
′, t′) =

δ(t− t′ − |r− r′|/c)
4π|r− r′|

Θ(t− t′),

which describes a signal emitted at (r′, t′) that reaches (r, t) after the light-travel
time |r− r′|/c.

3.2 Spectral Viewpoint

When studying a linear operator L, it is often not enough to know how to solve
LG = δ formally. We want to understand how the operator acts, which parts of the
system dominate its response, and how the underlying modes contribute to physical
observables. The spectral viewpoint provides precisely this insight: it decomposes
the operator into its elementary excitations (eigenmodes) and expresses the Green
function as their weighted superposition. This perspective links algebraic structure
to physical behavior, revealing stability, resonance, and long-time dynamics in a
unified framework.

From the completeness of eigenfunctions {un}∞n=1, one can write

δ(x− x′) =
∑
n

un(x)u
∗
n(x

′),

so the Green function naturally expands as

G(x, x′) =
∑
n

un(x)u
∗
n(x

′)

λn
.
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3.2 Spectral Viewpoint

This expression already shows that each eigenmode contributes inversely to its
eigenvalue—low-lying modes dominate the response.

Resolvent Green Functions. While the discrete spectral sum is illuminating,
realistic operators may have both discrete and continuous spectra, or depend on
external parameters (like energy). In such cases, it is more powerful to study a
one-parameter family of inverses:

R(λ) = (L− λI)−1,

called the resolvent operator, which is the analytic continuation of the Green
functions.

Just like in analytic number theory, we use the Riemann ζ function to analyze the
discrete prime numbers analytically. Introducing R(λ) extends the analysis into the
complex λ-plane, allowing us to treat both discrete and continuous structures in an
analytic framework. Its poles mark eigenvalues, and its singular structure captures
the full spectrum of L. Thus, rather than summing over modes explicitly, we can
recover all spectral information from the analytic properties of the resolvent.

The corresponding kernel

Gλ(x, x
′) = ⟨x|R(λ)|x′⟩

is the resolvent Green function, which satisfies

Gλ(x, x
′) =

∑
n

un(x)u
∗
n(x

′)

λn − λ
.

As λ→ 0, the resolvent reduces to the ordinary Green function:

G(x, x′) = Gλ=0(x, x
′) = L−1(x, x′).

Hence, the resolvent formalism not only generalizes the notion of inverse, but also
connects spectral analysis with complex analysis.
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Chapter 3 – Operator Methods and the Functional Viewpoint

Spectral theorem formulation. For a self-adjoint L, the spectral theorem
guarantees the existence of a projection-valued measure E(λ) on R such that

L =

ˆ
σ(L)

λ dE(λ), f(L) =

ˆ
σ(L)

f(λ) dE(λ),

and thus

R(λ) = (L− λI)−1 =

ˆ
σ(L)

1

µ− λ
dE(µ).

This integral representation emphasizes that discrete spectra yield isolated poles,
while continuous spectra generate branch cuts—physically corresponding to bound
and scattering states, respectively.

When the spectrum is continuous, the discrete expansion becomes an integral over
continuum states:

Gλ(x, x
′) =

ˆ
uk(x)u

∗
k(x

′)

E(k)− λ
dk.

The infinitesimal term +iε specifies the radiation (outgoing) condition, ensuring
causal and physically meaningful solutions.

3.2.1 Connections to Quantum Mechanics

In quantum mechanics, the resolvent

R(E) = (E −H + i0+)−1, GE(r, r
′) = ⟨r|R(E)|r′⟩

packages all spectral information of the Hamiltonian H into an analytic object on
the complex energy plane. Poles on the real axis identify bound states; branch cuts
encode the scattering continuum; isolated poles in the lower half-plane correspond
to resonances (quasi-bound states with finite lifetimes).
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3.2 Spectral Viewpoint

From spectrum to propagation By completeness of eigenstates {ψn} (plus
continuum {ψE,α}),

GE(r, r
′) =

∑
n

ψn(r)ψ
∗
n(r

′)

En − E − i0+
+

ˆ
dE ′

∑
α

ψE′,α(r)ψ
∗
E′,α(r

′)

E ′ − E − i0+
.

Low-lying modes dominate the response; the +i0+ selects the retarded (causal)
solution.

Time evolution is recovered by inverse transform:

U(t) = e−
i
ℏHt =

1

2πi

ˆ
Γ

dE e−
i
ℏEtR(E),

so residues of R(E) govern long-time behavior (bound states ⇒ persistent oscilla-
tions; resonances ⇒ exponential decay).

• Density of states.

ρ(E) = − 1

π
ImTr GR(E), ρ(r, E) = − 1

π
Im GR

E(r, r).

Thus, imaging Im GR maps out available quantum states (STM/STS, impuri-
ties, edges).

• Spectral function and sum rules.

A(r, r′;E) ≡ −2 Im GR
E(r, r

′),

ˆ
dE

2π
A = δ(r− r′).

A is the energy-resolved probability amplitude that underlies photoemission
and transport.

• Scattering (Lippmann–Schwinger and T -matrix). With H = H0 + V ,

|ψ(+)⟩ = |ϕ⟩+G
(+)
0 (E)V |ψ(+)⟩, T (E) = V + V G

(+)
0 (E)T (E).

Here G(+)
0 (E) is the free resolvent; all scattering amplitudes and cross sections

are built from T (E), hence from G
(+)
0 .

63



Chapter 3 – Operator Methods and the Functional Viewpoint

• Linear response (Kubo). Dissipative response is the imaginary part of a
retarded correlator, i.e. a resolvent of a commutator:

χR
AB(ω) =

1

ℏ

ˆ ∞

0

dt eiωt⟨[A(t), B(0)]⟩ = ⟨⟨A;B⟩⟩Rω ,

and real or imaginary parts are tied by Kramers–Kronig due to analyticity.

• Interacting systems and self-energy. Dyson equation in energy space:

GR(E) =
[
E −H0 − ΣR(E)

]−1
,

so interactions are compressed into the self-energy Σ (level shifts and lifetimes),
again via a resolvent.

How the resolvent enforces causality? The prescription E→E + i0+ selects
the retarded Green function GR, guaranteeing outgoing (radiation) boundary
conditions and causal propagation. Advanced solutions use −i0+. Different choices
correspond to physically distinct experiments (response and preparation).

3.3
Semigroup and Functional Calculus View-
point

More generally, functions of operators can be defined through spectral theory. If L
has eigenpairs (λn, un), then

f(L) =
∑
n

f(λn) |un⟩⟨un|.

The exponential operator

e−iLt =
∑
n

e−iλnt |un⟩⟨un|
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3.3 Semigroup and Functional Calculus Viewpoint

acts as a time-evolution operator. Its kernel

K(x, t;x′, 0) = ⟨x|e−iLt|x′⟩

is the propagator or time-dependent Green function. This formulation unifies
dynamical evolution, spectral expansion, and the inverse-operator view into a single
framework.

For positive self-adjoint operators L ≥ 0, the exponential e−tL defines a strongly
continuous semigroup satisfying

e−(t+s)L = e−tLe−sL, e0L = I.

Its kernel Kt(x, x
′) = ⟨x|e−tL|x′⟩, the heat kernel, solves

(∂t + L)Kt(x, x
′) = 0, Kt=0(x, x

′) = δ(x− x′).

The Green function is its Laplace transform:

L−1 =

ˆ ∞

0

e−tL dt, G(x, x′) =

ˆ ∞

0

Kt(x, x
′) dt.

Analytic continuation t→ it/ℏ turns the heat kernel into the Feynman propagator,
connecting Euclidean diffusion with quantum evolution. This relation underlies
the path-integral representation of quantum mechanics.

Summary.

• G(x, x′) is the kernel of the inverse operator L−1.

• The resolvent R(λ) generalizes L−1 and encodes the spectrum of L.

• The spectral theorem provides the measure-theoretic foundation linking R(λ)
and eigen-decomposition.

• The time-evolution operator e−iLt yields the propagator K(x, t; x′, 0).
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Chapter 3 – Operator Methods and the Functional Viewpoint

• The heat kernel e−tL and its Laplace transform connect diffusion, Green
functions, and quantum amplitudes.

In this functional language, the Green function becomes the geometric manifestation
of operator inversion, while its analytic and spectral structure encodes causality,
stability, and dynamics. It forms the unifying thread linking differential equations,
spectral theory, and quantum evolution.

66



Chapter

4

Functional Integrals and Path
Representations

The operator formalism developed in the previous chapter reveals that dynamical
evolution, Green functions, and spectral decompositions can all be viewed as
operations on function spaces. We now take one more conceptual step: to represent
these operator exponentials not as abstract algebraic objects, but as integrals over
trajectories in configuration space. This passage from operators to path integrals is
one of the deepest unifications in theoretical physics.

4.1 From Operators to Path Integrals

Consider the time-evolution operator for a quantum particle with Hamiltonian
H = p2

2m
+ V (x):

U(t) = e−
i
ℏHt.

Its kernel

K(xb, tb; xa, ta) = ⟨xb|e−
i
ℏH(tb−ta)|xa⟩
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Chapter 4 – Functional Integrals and Path Representations

gives the transition amplitude for a particle initially at xa to be found at xb after
time tb − ta.

Using the Trotter product formula,

e−
i
ℏ (T+V )t = lim

N→∞

(
e−

i
ℏV t/Ne−

i
ℏT t/N

)N
,

we can insert complete sets of position states between each factor and obtain an
N -fold integral over intermediate positions:

K(xb, tb; xa, ta) = lim
N→∞

ˆ N−1∏
j=1

dxj

N−1∏
j=0

⟨xj+1|e−
i
ℏH∆t|xj⟩.

Evaluating each short-time kernel to leading order gives

⟨xj+1|e−
i
ℏH∆t|xj⟩ ≈

( m

2πiℏ∆t

)1/2
exp

[
i

ℏ
∆t

(
m

2

(
xj+1 − xj

∆t

)2

− V (xj)

)]
.

Multiplying these factors and taking the continuum limit, we arrive at the celebrated
Feynman path integral:

K(xb, tb; xa, ta) =

ˆ x(tb)=xb

x(ta)=xa

exp

[
i

ℏ
S[x(t)]

]
Dx(t),

where the action functional is

S[x(t)] =

ˆ tb

ta

[
1
2
mẋ2 − V (x)

]
dt.

The Green function of the Schrödinger operator is thus represented as an integral
over all possible trajectories weighted by the phase factor eiS/ℏ.

If we perform a Wick rotation t 7→ −iτ , the oscillatory factor eiS/ℏ becomes a real
exponential e−SE/ℏ, where SE is the Euclidean action:

SE[x(τ)] =

ˆ [
1
2
mẋ2 + V (x)

]
dτ.
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4.2 Field Theory and Functional Integration

The propagator becomes

KE(xb, τb; xa, τa) =

ˆ
exp

[
−1

ℏ
SE[x(τ)]

]
Dx(τ),

which coincides with the heat kernel

KE = e−(τb−τa)H/ℏ.

Thus, the path integral provides a probabilistic interpretation of the operator
semigroup e−tL introduced in the previous chapter: quantum evolution in imaginary
time is equivalent to diffusion governed by the same generator.

4.2 Field Theory and Functional Integration

In the limit ℏ→ 0, the rapidly oscillating phase eiS/ℏ causes destructive interference
except near stationary points of S[x], where δS = 0. These stationary paths are
precisely the classical trajectories, and the leading approximation to the kernel is

K(xb, tb; xa, ta) ≈
∑

classical paths

A(xa, xb) exp

[
i

ℏ
Scl(xa, xb)

]
,

where A is the semiclassical prefactor. This gives the correspondence principle:
the path integral reproduces classical mechanics as the stationary-phase limit of
quantum evolution.

The same reasoning extends from particle paths to fields. For a scalar field ϕ(r, t)
with Lagrangian density

L =
1

2
(∂tϕ)

2 − 1

2
(∇ϕ)2 − V (ϕ),

the generating functional is

Z[J ] =

ˆ
exp

[
i

ℏ

ˆ
(L+ Jϕ) d4x

]
Dϕ,
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Chapter 4 – Functional Integrals and Path Representations

and the Green functions of the field are obtained as functional derivatives:

Gn(x1, . . . , xn) =
1

in
δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

.

Thus, the operator-based Green function formalism extends seamlessly to the
infinite-dimensional setting of fields, where it becomes the backbone of quantum
field theory and statistical mechanics.

4.2.1 Correlation Functions and Generating Functionals

In the path-integral framework, expectation values of observables become functional
averages. For a quantum system with Euclidean action SE[ϕ], we define the partition
function

Z =

ˆ
e−SE [ϕ]/ℏDϕ,

and the expectation value of any functional F [ϕ] as

⟨F [ϕ]⟩ = 1

Z

ˆ
F [ϕ] e−SE [ϕ]/ℏDϕ.

To generate correlation functions systematically, we introduce an external source
J(x) coupled linearly to the field:

Z[J ] =

ˆ
exp

[
−1

ℏ
(
SE[ϕ]−

ˆ
Jϕ ddx

)]
Dϕ.

Then, the n-point correlation functions follow by functional differentiation:

Gn(x1, . . . , xn) =
1

Z[0]

δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

.

In the language of operators, these Gn correspond to time-ordered expectation
values ⟨0|T{ϕ(x1) · · ·ϕ(xn)}|0⟩. Thus, the generating functional Z[J ] plays a role
analogous to the resolvent or Green operator of the previous chapter, but now in
the space of field configurations.
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4.2 Field Theory and Functional Integration

Example 4.1: Free theories

For a free scalar field with quadratic action

SE[ϕ] =
1

2

ˆ
ϕ(x)Lϕ(x) ddx, L = (−∇2 +m2),

the functional integral is Gaussian and can be evaluated exactly:

Z[J ] = Z[0] exp

[
1

2ℏ

ˆ
J(x)G(x, x′) J(x′) ddx ddx′

]
,

where G satisfies
LG(x, x′) = δ(x− x′).

This G(x, x′) is precisely the Green function introduced before: it represents
the two-point correlation function,

⟨ϕ(x)ϕ(x′)⟩ = ℏG(x, x′).

Hence, in the free theory, the entire hierarchy of correlations is encoded in
the operator inverse L−1, making explicit the continuity between operator and
functional viewpoints.

4.2.2 Perturbation Theory and Feynman Diagrams

When the action contains nonlinear terms, e.g.

SE[ϕ] = Sfree[ϕ] +

ˆ
V (ϕ) ddx,

we expand the interaction exponential as a power series:

Z[J ] =

ˆ
e−Sfree[ϕ]/ℏ

(
1− 1

ℏ

ˆ
V (ϕ) +

1

2!ℏ2

ˆ
V (ϕ)V (ϕ′) + · · ·

)
e

1
ℏ
´
JϕDϕ.

Since the free part is Gaussian, all higher-order correlations can be computed
using Wick’s theorem: pairwise contractions of fields are replaced by propagators
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Chapter 4 – Functional Integrals and Path Representations

G(x, x′). Each term in the expansion corresponds to a graph— a Feynman
diagram—whose edges represent propagators and whose vertices correspond to
powers of V (ϕ). Thus, perturbation theory in field theory is nothing but the
systematic expansion of the generating functional in powers of the interaction, with
combinatorics governed by the Gaussian measure.

4.2.3 Connected and Effective Functionals

It is often convenient to define the connected generating functional

W [J ] = ℏ lnZ[J ],

whose derivatives generate connected correlation functions:

δ2W [J ]

δJ(x) δJ(x′)
= ⟨ϕ(x)ϕ(x′)⟩c.

The effective action Γ[ϕc] is obtained as the Legendre transform of W [J ]:

Γ[ϕc] = W [J ]−
ˆ
J(x)ϕc(x) d

dx, ϕc(x) =
δW [J ]

δJ(x)
.

Stationary points of Γ yield the expectation values of fields,

δΓ[ϕc]

δϕc(x)
= 0,

analogous to classical equations of motion but now incorporating quantum cor-
rections. This structure parallels the operator resolvent R(λ) as the generator of
nonlinear response.

4.3 Statistical Mechanics Analogy

In Euclidean time, the generating functional becomes identical to a partition
function:

Z =

ˆ
e−βH[ϕ]Dϕ, β = 1/kBT.
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4.3 Statistical Mechanics Analogy

Here the Green function represents a correlation function in a thermal ensemble, and
the operator L acts as the generator of diffusion or relaxation. The correspondence

t↔ −iτ, ℏ↔ kBT

links quantum dynamics to classical statistical mechanics: quantum fluctuations and
thermal noise share the same mathematical origin in the path-integral measure.

When interactions are present, ultraviolet divergences arise from short-distance be-
havior of the propagator G(x, x′). These infinities reflect the necessity of redefining
the parameters of the theory (mass, coupling, etc.) as functions of a cutoff scale.
In the functional language, renormalization corresponds to a flow of the effective
action Γ[ϕc] under coarse-graining transformations:

Λ
∂ΓΛ

∂Λ
= R[ΓΛ],

where R encodes how integrating out high-frequency modes modifies the dynamics
at long wavelengths. This renormalization-group (RG) viewpoint extends the
operator idea of spectral decomposition to an infinite hierarchy of scales.

Summary. The functional-integral framework unifies many ideas previously
developed:

• Green functions are correlation functions of fluctuating fields.

• Operator inverses become Gaussian integrals over configurations.

• The generating functional Z[J ] generalizes the resolvent; its logarithm W [J ]

encodes connected responses, and its Legendre transform Γ[ϕc] plays the role
of an effective dynamical generator.

• Perturbation theory appears as a diagrammatic expansion around the Gaussian
measure defined by L−1.
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Chapter 4 – Functional Integrals and Path Representations

• In Euclidean time, path integrals become statistical partition functions, linking
quantum and thermal fluctuations.

From this point on, the Green function ceases to be merely a solution to a differential
equation. It becomes the carrier of correlations, spectra, and causality— the
unifying mathematical object of both quantum dynamics and statistical field
theory.

74



Bibliography

[1] Strauss, Walter A. Partial differential equations: An introduction. John Wiley
& Sons, 2007.

[2] Stein, Elias M., and Rami Shakarchi. Real analysis: measure theory, integration,
and Hilbert spaces. Princeton University Press, 2009.

[3] Logan, J. David. Applied mathematics. John Wiley & Sons, 2013.

[4] Clason, Christian. Introduction to functional analysis. Springer Nature, 2020.

[5] D. J. Griffiths: Introduction to Quantum Mechanics, 3rd edition.

[6] J. D. Jackson: Classical Electrodynamics, 3rd edition.

[7] Goldenfeld, Nigel. Lectures on phase transitions and the renormalization group.
CRC Press, 2018.

[8] Sakurai, Jun John, and Jim Napolitano. Modern quantum mechanics. Cambridge
University Press, 2020.

75


	Preface
	1 Mathematical Background
	1.1 Metric Spaces
	1.1.1 Open and Closed Sets
	1.1.2 Interior, Closure, and Boundary
	1.1.3 Continuity and Neighborhoods

	1.2 Measure Theory and Generalized Functions
	1.2.1 Motivation
	1.2.2 Dirac Measure as a Singular Distribution
	1.2.3 Dirac Delta and the Need for Generalized Functions
	1.2.4 Metric and Convergence of Measures
	1.2.5 Measure Theory as the Bridge to Distributions
	1.2.6 Concentration and Flow
	1.2.7 More Generalized Functions

	1.3 Fourier Transforms of Generalized Functions
	1.3.1 Schwartz Space and Tempered Distributions
	1.3.2 Green Functions as Inverse Fourier Transforms
	1.3.3 Poles, Dispersion, and Causality
	1.3.4 The Residue Theorem and Contour Integration


	2 Green Operators in Mechanics and Field Theory
	2.1 Green Functions as Propagators on the Space of Measures
	2.1.1 Green Functions in Dynamical Systems
	2.1.2 Green Function as a Propagator on Measures
	2.1.3 Connection to Physical Response

	2.2 Green Functions in Linear Systems
	2.2.1 The Discrete Oscillator Chain
	2.2.2 Continuum Limit and the Wave Equation

	2.3 Green Functions in Spacetime and Wave Propagation
	2.3.1 The Wave Equation
	2.3.2 Causality and the Retarded Green Function
	2.3.3 Frequency-Domain Representation

	2.4 Boundary Value Problems
	2.4.1 General Formulation
	2.4.2 Method of Images from the Green Functions

	2.5 Field Theoretic Interpretation

	3 Operator Methods and the Functional Viewpoint
	3.1 Linear Operators and Their Inverses
	3.2 Spectral Viewpoint
	3.2.1 Connections to Quantum Mechanics

	3.3 Semigroup and Functional Calculus Viewpoint

	4 Functional Integrals and Path Representations
	4.1 From Operators to Path Integrals
	4.2 Field Theory and Functional Integration
	4.2.1 Correlation Functions and Generating Functionals
	4.2.2 Perturbation Theory and Feynman Diagrams
	4.2.3 Connected and Effective Functionals

	4.3 Statistical Mechanics Analogy


