Group Meeting $#1$

Hao-Yang Yen

NTHU, Interdisciplinary Program of Sciences

2024/7/12

Hao-Yang Yen (NTHU, Interdisciplinary Program of Scoup Meeting $\#1$ 2024/7/12 2024/7/12 1/22

4 0 8

Outline

4 Methodology

- ▶ From Vector to Tensor
- ▶ From Tensor to Network
- ▶ Tensor Network Approach
- **2** Application
	- ▶ Application in Stochastic Dynamics
	- ▶ Example: The SIS Model
	- ▶ My idea: Random Walk

Definition

Vector Space

Let F be a field. A F -vector space is set V equipped with two operators

$$
+ : V \times V \to V,
$$

$$
\cdot : F \times V \to V
$$

satisfies the following conditions

•
$$
(V, +)
$$
 is an abelian group,

- $a \cdot (b \cdot v) = (ab) \cdot v$ for all a, $b \in F$ and $v \in V$,
- $(a + b) \cdot v = a \cdot v + b \cdot v$ for all a, $b \in F$ and $v \in V$,
- $a(u + v) = au + av$ for all $a \in F$ and $u, v \in V$,
- id $F \in F$ such that $idF \cdot v = v$.

 Ω

イロト イ押 トイヨ トイヨト

Definition

Tensor product

Let V and W be vector spaces and I be a subspace of $\langle V \times W \rangle$ spanned by all the vectors having the form

$$
(u + v, w) - (u, w) - (v, w), (cv, w) - c(v, w),
$$

$$
(u, v + w) - (u, w) - (u, v), (v, cw) - c(v, w).
$$

The tensor product of vector spaces V and W denoted by $V \otimes W$ is defined as

$$
\langle V \times W \rangle / \operatorname{span}(I).
$$

Hao-Yang Yen (NTHU, Interdisciplinary Program of Sciences) Group Meeting $\#1$ 2024/7/12 4/22

つへへ

Definition

Tensor product

Let $v \in V$ and $w \in W$. The tensor product of vectors v and w denoted by $v \otimes w$ is

$$
v\otimes w=(v,w).
$$

Let A, $B \subseteq V \otimes W$. The **tensor product of subsets** A and B denoted by $A \otimes B$ is

$$
A \otimes B = \{ \alpha \otimes \beta | \alpha \in A, \ \beta \in B \}.
$$

Remark

Let α and β be bases for V and W respectively. It is easy to check that $\alpha \otimes \beta$ is the basis for $V \otimes W$. We immediately have, dim $V \otimes W = \dim V \times \dim W$. This is why we use the word "tensor".

 Ω

Definition

Let V, V_2 , W₁ and W₂ be vector spaces and $f: V_1 \rightarrow V_2$ and $g: W_1 \to W_2$ be linear transformations. The tensor product of linear transformations f and g is defined as

$$
f\otimes g: V_1\otimes W_1\to V_2\otimes W_2, v\otimes w\mapsto f(v)\otimes g(w).
$$

1 The linear transformations and vectors are equivalent to matrices and column vectors in a finite-dimensional vector space.

$$
f_i^j v_j = w_i \text{ (matrices form)} \leftrightarrow f(v) = w \text{ (abstract form)}.
$$

- **2** The linear transformations and therefore matrices also form vector spaces. We can therefore consider the tensor product of these vector spaces.
- **3** The tensor product of linear transformations and vectors can be represented by "high-dimensional" matrices (tensor) $M_{i_1 i_2 \cdots i_N}$ in the tensor product of finite-dimensional vector spaces.

Example

Let V_i , W_i , and U be vector spaces, $f: V_1 \rightarrow V_2$ and $g: W_1 \rightarrow W_2$ be linear transformations, and $u \in U$ be a vector. The tensor product of them is

$$
u\otimes f\otimes g\equiv T.
$$

T is a linear transformation defined as

 $T: V_1 \otimes W_1 \to U \otimes V_2 \otimes W_2$, $v \otimes w \mapsto u \otimes v \otimes w$.

This has the tensor form

$$
T(v \otimes w) = u \otimes f(v) \otimes g(w)
$$

$$
\updownarrow
$$

$$
T_{ijk\alpha\beta}[v \otimes w]^{\alpha\beta} = [u \otimes f(v) \otimes g(w)]_{ijk}.
$$

Example

Note that $f: V_1 \to V_2$, $g: W_1 \to W_2$ and $u \in U$. We have the index sets of the tensor $T_{iik\alpha\beta}$

$$
\alpha\in\{1,\cdots,\dim V_1\},\ \beta\in\{1,\cdots,\dim W_1\},
$$

 $i \in \{1, \dots, \dim U\}, i \in \{1, \dots, \dim V_2\}, k \in \{1, \dots, \dim W_2\}.$

Definition

Tensor Diagram Notation

A rank-n tensor T can be represented by a node with n edges corresponding to n indices. The summation of two tensors over some indices can be represented by connecting the corresponding edges.

Example

Hao-Yang Yen (NTHU, Interdisciplinary Program of Scoup Meeting $\#1$ 2024/7/12 2024/7/12 11/22

∢ 重

 299

(ロ) (d)

- **4** According to quantum postulate. The state space of a composite quantum system is the tensor product of the state spaces of its individual components.
- ² Consider a one-dimensional quantum chain, and the Hilbert space for the *i*th lattice is \mathcal{H}_i , then the corresponding Hilbert space is

3 The states in this space can be written as

$$
\left|\Psi\right\rangle=\sum_{\{s_{i}\}}\Psi_{s_{1}\cdots s_{N}}\left|s_{1}\right\rangle\otimes\cdots\otimes\left|s_{N}\right\rangle.
$$

 \bullet Note that $\Psi_{s_1\cdots s_N}$ is a tensor, by the SVD, we can rewrite it as a product of tensors

$$
\Psi_{s_1\cdots s_N} = \left.\mathcal{T}^{[1]}_{s_1i_1}\mathcal{T}^{[2]}_{s_1}i_2}i_1\cdots \mathcal{T}^{[N-1]}_{s_{N-1}}i_{N-2}i_{N-1}\mathcal{T}^{[N]}_{s_N}i_{N-1}\right.
$$

This is called the Matrix Product State.

 $\, {\bf 2} \,$ The complexity of $\Psi_{s_1\cdots s_N}$ is

 $\mathcal{O}(\dim\mathcal{H}_i^N)$

and that for $\left.\mathcal{T}^{[1]}\right|_{s_1i_1}\cdots\left.\mathcal{T}^{[N]}\right|_{s_N}i_{N-1}}$ is $\mathcal{O}(\dim \mathcal{H}_i)$.

Example

Greenberger-Horne-Zeilinger (GHZ) state The GHZ state is

$$
\begin{aligned} |GHZ\rangle&=\frac{1}{\sqrt{2}}\left|0\right\rangle\otimes\cdots\otimes\left|0\right\rangle+\frac{1}{\sqrt{2}}\left|1\right\rangle\otimes\cdots\otimes\left|1\right\rangle\\ &=\frac{1}{\sqrt{2}}\sum_{\{s_i\}}\Psi_{s_1\cdots s_N}\bigotimes_{i=1}^N\left|s_i\right\rangle, \end{aligned}
$$

where

$$
\Psi_{s_1\cdots s_N} = \begin{cases} 1, & \text{if } s_1 = \cdots = s_N \in \{0, 1\} \\ 0, & \text{otherwise.} \end{cases}
$$

Hao-Yang Yen (NTHU, Interdisciplinary Program of Scoup Meeting $\#1$ 2024/7/12 2024/7/12 14/22

4 **EL F**

 Ω

Example

Greenberger-Horne-Zeilinger (GHZ) state (continued) The MPS form is given by the tensor

$$
\frac{1}{\sqrt{2}}\mathit{Tr}\begin{pmatrix} \hat{e_1} & 0 \\ 0 & \hat{e_2} \end{pmatrix}^N = \frac{1}{\sqrt{2}}(\hat{e_1}^{\otimes N} + \hat{e_2}^{\otimes N}).
$$

That is,

$$
\begin{aligned}\n\ket{\textit{GHZ}}&=\frac{1}{\sqrt{2}}\sum_{\{s_i\}}\Psi_{s_1\cdots s_N}\bigotimes_{i=1}^N\ket{s_i} \\
&=\frac{1}{\sqrt{2}}\sum_{\{s_i\}}(\hat{e_1}^{\otimes N}+\hat{e_2}^{\otimes N})_{s_1\cdots s_N}\bigotimes_{i=1}^N\ket{s_i}.\n\end{aligned}
$$

4 **EL F**

Hao-Yang Yen (NTHU, Interdisciplinary Program of Sciences) Group Meeting $\#1$ 2024/7/12 15/22

G.

 QQQ

イタト イミト イヨト

Application in Stochastic Dynamics

4 Step 1: Write the configuration of the state space as a vector $|\Psi(t)\rangle$ and therefore becomes a quantum-mechanics form. Expand this vector with basis $|s_1, s_2, \cdots, s_N\rangle$. That is, describe the state by a vector

$$
\ket{\Psi(t)} = \sum_{\{s_i\}} \Psi_{s_1, s_2, \cdots, s_N}(t) \ket{s_1, s_2, \cdots, s_N}.
$$

2 Step 2: Write down the "Hamiltonian" H for the system, in other words, find the operator determining the master equation

$$
\partial_t \left| \Psi \right> = H \left| \Psi \right>
$$

of the system.

つへへ

Application in Stochastic Dynamics

1 Step 3: Represent the state $|\Psi\rangle$ as MPS. That is,

$$
\left|\Psi\right\rangle=\sum_{\left\{s_{i}\right\}}\prod_{i}\left. \mathcal{T}^{s_{i}}\left|s_{1},\cdots,s_{N}\right\rangle .
$$

2 Step 4: Employ the TN algorithm, for example, DMRG or VMPS, to solve the corresponding question. See the example.

Example

Example

SIS Model

4 Step 1: The configuration of the state space as a vector $|P(t)\rangle$ and therefore becomes a quantum-mechanics form. Expand this vector with basis $|s_1, s_2, \dots, s_N\rangle$, where $s_i \in \{0, 1\}$. That is, describe the state by a vector

$$
|P(t)\rangle = \sum_{\{s_i\}} P_{s_1,s_2,\cdots,s_N}(t) |s_1,s_2,\cdots,s_N\rangle.
$$

2 Step 2: The operator determining the master equation is the infinitesimal Markov Generator \hat{W}

$$
\partial_t |P\rangle = \hat{W} |P\rangle.
$$

 \leftarrow \Box

4 何 ト

of the system.

 QQ

Example

Example

SIS Model (continued)

1 Step 3: Represent the state $|P\rangle$ as MPS. That is,

$$
|P\rangle = \sum_{\{s_i\}} \prod_i \, \mathcal{T}^{s_i} \, |s_1,\cdots,s_N\rangle \, .
$$

2 Step 4: Employing the variational approach, one can see the high-accuracy critical behavior.

 Ω

Random Walk

1 For unrestricted random walk. The ensemble average position of the end of the polymer \vec{r} satisfies

$$
\langle r \rangle = 0
$$
 and $\langle r^2 \rangle^{1/2} \propto N^{1/2}$,

where N is the number of links in the chain.

2 The variance of r diverges as $N \to \infty$ and

$$
\sqrt{\langle r^2 \rangle - \langle r \rangle^2} \propto N^{1/2}.
$$

3 It is therefore natural to view the unrestricted random walk a^s critical system with the critical exponent $\nu = 1/2$.

つへへ

Random Walk

- **1** Self-Avoid Random Walk is a crucial model in polymer physics.
- \bullet A point move on the lattice \mathbb{Z}^d randomly but without intersection.
- **3** It can be simulated by the Monte Carlo method.

• The critical exponent for SARW is $\nu = 1/(2 + d)$ if $d =$

 $\partial \alpha \cap$

Random Walk

- **1** RW is also a lattice model having critical behaviors.
- **2** The computational complexity for the simulation of SARW grows very fast as the number of steps increases.
- **3** Can we also apply the TN approach to it to find the critical behaviors as what we get in the SIS model?

