Group Meeting #2

Hao-Yang Yen

NTHU, Interdisciplinary Program of Sciences

2024/7/18

Hao-Yang Yen (NTHU, Interdisciplinary Program of Sciences) Group Meeting $\#2$ 2024/7/18 1/16

4 0 8

Outline

1 The SIS Model

- ▶ Introduction to the SIS model.
- \triangleright Non-equilibrium phase transition.
- **2** Theoretical Basis of the TN approach
	- ▶ From Ising model to the SIS model.
	- \blacktriangleright The tensor product formulation.
	- \blacktriangleright The large deviation principle.

Introduction to the SIS Model

Introduction to the SIS Model

1 The SIS model can be written as a differential equations system form.

$$
\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I, \\ \frac{dl}{dt} = \beta SI - \gamma I. \end{cases}
$$

 $\hat{}$

- **2** There are several kinds of extensions to the SIS model, for example, the SIR model.
- **3** The SIS model is the simplest epidemic model that can describe the phase transitions.

Non-Equilibrium Phase Transition

1 The SIS model has the differential equation form

$$
\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I, \\ \frac{dl}{dt} = \beta SI - \gamma I. \end{cases}
$$

- The model is characterized by two parameters β and γ .
- The non-equilibrium phase transition in SIS models is described by the relation

 \int Absorbing Phase: $\frac{\beta}{\gamma} \leq 1$, Endemic Phase: $\frac{\beta}{\gamma}>1$.

4 Simulation:

https://kikiyenhaoyang.github.io/kikiyen/Web/TN

From Ising model to the SIS mode

Figure: One-dimensional Ising model.

Hao-Yang Yen (NTHU, Interdisciplinary Program of Sciences) Group Meeting $\#2$ 2024/7/18 6/16

←□

From Ising model to the SIS mode

1 Each lattice in the model having the quantum state $|s_i\rangle$ lives in the Hilbert space and therefore can be written as the linear combination of $|0\rangle$ and $|1\rangle$.

2 Composite Systems Postulate

The state space of a composite quantum system is the tensor product of the state spaces of its components. That is, the complete Hilbert space of a composite system is

$$
\mathcal{H}=\bigotimes_{i=1}^N\mathcal{H}_i.
$$

From Ising model to the SIS mode

1 The basis for the complete Hilbert space is

$$
\{\bigotimes_{j=1}^N |i_j\rangle\}_{i_j\in\{0,1\}}.
$$

² The quantum state of the complete Ising model can be written as

$$
|\Psi\rangle = \Psi(s_1, \dots, s_N) \bigotimes_{i=1}^N |s_i\rangle.
$$

From Ising Model to the SIS Model

- **1** The Hibert space has dimension $2^N = \mathcal{O}(2^N)$, which grows rapidly.
- With the TN, we can reduce it to $\mathcal{O}(N)$, which is much more efficient.
- The SIS model is also a kind of binary model. Thus we can write it in tensor product formulation as well.

4 Measurement Postulate

Upon measurement, the outcome of an observable is one of its eigenvalues, and the probability of obtaining a particular outcome is given by the square of the absolute value of the projection of the state vector onto the corresponding eigenvector. That is,

$$
\sum_i C_i |\Psi_i\rangle \xrightarrow{\text{Measurement}} |\Psi_i\rangle, \text{ with probability } |C_i|^2.
$$

1 In the lattice form SIS model. A lattice is in state $|0\rangle = |S\rangle$ or $|1\rangle = |I\rangle$ with probability $P_0(t)$ and $P_1(t)$ respectively. That is,

$$
|P(t)\rangle = P_0(t) |0\rangle + P_1(t) |1\rangle,
$$

which is analog to

$$
\left|\Psi\right\rangle =\Psi_{0}\left|0\right\rangle +\Psi_{1}\left|1\right\rangle .
$$

2 The state space of the SIS model is

$$
\bigotimes_{i=1}^N \mathcal{H}_i, \text{ where } \mathcal{H} = \text{Span}\{|0\rangle, |1\rangle\}.
$$

4 Since the SIS model is a kind of Markov chain, we can consider the infinitesimal Markov generator \hat{W} so that

$$
\partial_t |P(t)\rangle = \hat{W} |P(t)\rangle ,
$$

which is Schrödinger-equation-like.

2 Time Evolution Postulate

The time evolution of a quantum system is governed by the Schrödinger equation

$$
-i\partial_t\ket{\Psi}=\hat{H}\ket{\Psi},
$$

which describes how the state vector changes over time.

1 The infinitesimal Markov generator \hat{W} for the SIS model is

$$
\hat{W} = \beta \sum_{i=1}^{N-1} (\hat{n}_i \omega_{i+1}^2 \omega^{i+1} + \hat{\omega}_i \omega^{i+1} n_{i+1}) + \gamma \sum_{i=1}^N \hat{\omega}_i^{1} \omega^{i+1} + \hat{W}_{\text{driv}}(\alpha),
$$

where

$$
\hat{n_{i}}=\left|1\right\rangle _{i}\left\langle 1\right|,\;\hat{\omega_{i}}^{0\rightarrow1}=\left|1\right\rangle _{i}\left\langle 0\right|-\left|0\right\rangle _{i}\left\langle 0\right|,\;\hat{\omega_{i}}^{0\rightarrow1}=\left|0\right\rangle _{i}\left\langle 1\right|-\left|1\right\rangle _{i}\left\langle 1\right|.
$$

² The generator is analog to the quantum Hamiltonian.

4 Quantum State Postulate

A quantum system is fully described by its state vector, usually denoted by $|\psi\rangle$ in Dirac notation. This state vector resides in a complex vector space known as a C−Hilbert space.

Definition

Vector Space

Let F be a field. A F -vector space is set V equipped with two operators

$$
+ : V \times V \to V,
$$

 $\cdot \cdot F \times V \rightarrow V$

satisfies the following conditions

•
$$
(V, +)
$$
 is an abelian group,

- $a \cdot (b \cdot v) = (ab) \cdot v$ for all a, $b \in F$ and $v \in V$,
- $(a + b) \cdot v = a \cdot v + b \cdot v$ for all a, $b \in F$ and $v \in V$,
- $a(u + v) = au + av$ for all $a \in F$ and $u, v \in V$,
- id $F \in F$ such that id $F \cdot v = v$.

 Ω

イロト イ母 トイヨ トイヨ)

- **1** Though we analog the generator to the quantum Hamiltonian, there are many differences between the generator and the quantum Hamiltonian.
- **2** The generator is a REAL matrix and the the basis lives in a R−Hilbert space.
- **3** Many good properties are broken in the real Hilbert space.
- ⁴ We can not treat it as a quantum system.

