# Group Meeting #2

### Hao-Yang Yen

#### NTHU, Interdisciplinary Program of Sciences

2024/7/18



Hao-Yang Yen (NTHU, Interdisciplinary Prog

Group Meeting #2

2024/7/18

- 一司

# Outline

### The SIS Model

- Introduction to the SIS model.
- Non-equilibrium phase transition.
- Provide the TN approach
  - From Ising model to the SIS model.
  - The tensor product formulation.
  - The large deviation principle.



# Introduction to the SIS Model



# Introduction to the SIS Model

• The SIS model can be written as a differential equations system form.

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I, \\ \frac{dI}{dt} = \beta SI - \gamma I. \end{cases}$$

- There are several kinds of extensions to the SIS model, for example, the SIR model.
- The SIS model is the simplest epidemic model that can describe the phase transitions.



# Non-Equilibrium Phase Transition

The SIS model has the differential equation form

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I, \\ \frac{dI}{dt} = \beta SI - \gamma I. \end{cases}$$

- 2 The model is characterized by two parameters  $\beta$  and  $\gamma$ .
- The non-equilibrium phase transition in SIS models is described by the relation

 $\begin{cases} \text{Absorbing Phase: } \frac{\beta}{\gamma} \leq 1, \\ \text{Endemic Phase: } \frac{\beta}{\gamma} > 1. \end{cases}$ 

Simulation:

https://kikiyenhaoyang.github.io/kikiyen/Web/TN\_ftm

# From Ising model to the SIS mode



#### Figure: One-dimensional Ising model.



Hao-Yang Yen (NTHU, Interdisciplinary Prog

Group Meeting #2

2024/7/18

# From Ising model to the SIS mode

● Each lattice in the model having the quantum state |s<sub>i</sub>⟩ lives in the Hilbert space and therefore can be written as the linear combination of |0⟩ and |1⟩.

### **2** Composite Systems Postulate

The state space of a composite quantum system is the tensor product of the state spaces of its components. That is, the complete Hilbert space of a composite system is

$$\mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_i.$$



From Ising model to the SIS mode

The basis for the complete Hilbert space is

$$\{\bigotimes_{j=1}^N |i_j\rangle\}_{i_j\in\{0,1\}}.$$

Interpretation of the complete light model can be written as

$$|\Psi\rangle = \Psi(s_1, \cdots, s_N) \bigotimes_{i=1}^N |s_i\rangle.$$

# From Ising Model to the SIS Model

- **(**) The Hibert space has dimension  $2^N = \mathcal{O}(2^N)$ , which grows rapidly.
- **2** With the TN, we can reduce it to  $\mathcal{O}(N)$ , which is much more efficient.
- The SIS model is also a kind of binary model. Thus we can write it in tensor product formulation as well.



### Measurement Postulate

Upon measurement, the outcome of an observable is one of its eigenvalues, and the probability of obtaining a particular outcome is given by the square of the absolute value of the projection of the state vector onto the corresponding eigenvector. That is,

$$\sum_{i} C_{i} \ket{\Psi_{i}} \xrightarrow{\text{Measurement}} \ket{\Psi_{i}}, \text{ with probability } |C_{i}|^{2}$$



• In the lattice form SIS model. A lattice is in state  $|0\rangle = |S\rangle$  or  $|1\rangle = |I\rangle$  with probability  $P_0(t)$  and  $P_1(t)$  respectively. That is,

$$\left|P(t)
ight
angle=P_{0}(t)\left|0
ight
angle+P_{1}(t)\left|1
ight
angle,$$

which is analog to

$$\ket{\Psi} = \Psi_0 \ket{0} + \Psi_1 \ket{1}.$$

The state space of the SIS model is

$$\bigotimes_{i=1}^{N} \mathcal{H}_{i}, ext{ where } \mathcal{H} = \mathsf{Span}\{\ket{0}, \ket{1}\}.$$



• Since the SIS model is a kind of Markov chain, we can consider the infinitesimal Markov generator  $\hat{W}$  so that

$$\partial_t \left| P(t) \right\rangle = \hat{W} \left| P(t) \right\rangle,$$

which is Schrödinger-equation-like.

### Itime Evolution Postulate

The time evolution of a quantum system is governed by the Schrödinger equation

$$-i\partial_t |\Psi\rangle = \hat{H} |\Psi\rangle,$$

which describes how the state vector changes over time.



 $\textbf{0} \ \ \text{The infinitesimal Markov generator} \ \ \hat{\mathcal{W}} \ \ \text{for the SIS model is}$ 

$$\hat{W} = \beta \sum_{i=1}^{N-1} (\hat{n}_i \omega_{i+1}^{\circ} )^{\bullet \to 1} + \hat{\omega}_i^{\circ \to 1} \hat{n}_{i+1} ) + \gamma \sum_{i=1}^{N} \hat{\omega}_i^{\circ \to 0} + \hat{W}_{driv}(\alpha),$$

where

$$\hat{n}_{i} = |1\rangle_{i} \langle 1|, \ \hat{\omega_{i}}^{0 \to 1} = |1\rangle_{i} \langle 0| - |0\rangle_{i} \langle 0|, \ \hat{\omega_{i}}^{0 \to 1} = |0\rangle_{i} \langle 1| - |1\rangle_{i} \langle 1|.$$

**2** The generator is *analog* to the quantum Hamiltonian.



#### **Quantum State Postulate**

A quantum system is fully described by its state vector, usually denoted by  $|\psi\rangle$  in Dirac notation. This state vector resides in a complex vector space known as a C–Hilbert space.



Hao-Yang Yen (NTHU, Interdisciplinary Prog

Group Meeting #2

2024/7/18

Definition

### Vector Space

Let F be a field. A F-vector space is set V equipped with two operators

$$+: V \times V \to V,$$

 $\cdot: F \times V \to V$ 

satisfies the following conditions

- $a \cdot (b \cdot v) = (ab) \cdot v$  for all  $a, b \in F$  and  $v \in V$ ,
- $(a+b) \cdot v = a \cdot v + b \cdot v$  for all  $a, b \in F$  and  $v \in V$ ,

• 
$$a(u + v) = au + av$$
 for all  $a \in F$  and  $u, v \in V$ ,

•  $id_F \in F$  such that  $id_F \cdot v = v$ .

15/16

イロト イポト イヨト イヨト

- Though we analog the generator to the quantum Hamiltonian, there are many differences between the generator and the quantum Hamiltonian.
- **②** The generator is a **REAL** matrix and the basis lives in a  $\mathbb{R}$ -Hilbert space.
- Many good properties are broken in the real Hilbert space.
- We can not treat it as a quantum system.

