Subgroup Meeting #3

Hao-Yang Yen

NTHU

2024/7/30

Hao-Yang Yen (NTHU) [Subgroup Meeting #3](#page-9-0) 2024/7/30 1/10

 \leftarrow \Box

4 冊 ▶ 4 重

DMRG for the SIS Model

- In ordinary quantum mechanics, the operators for the observables live in $\mathcal{L}(\mathcal{H}, \mathcal{H})$, where $\mathcal H$ is a $\mathbb C$ −**Hilbert space**.
- In the SIS model, the linear operators also live in $\mathcal{L}(\mathcal{H},\mathcal{H})$, but here H is a $\mathbb{R}-$ **Hilbert space.**
- The linear operators in the SIS model are **not hermitian**.
- Why does the DMRG work?

Is the Hamiltonian diagonalizable? What is the spectrum of the Hamiltonian? How to get the NESS from the Hamiltonian?

DMRG for the SIS Model

• Diagonalizability:

Master equation: $\partial_t |P(t)\rangle = \hat{W} |P(t)\rangle$ The state: $|P(t)\rangle = e^{t\hat{W}}|P(0)\rangle$ Write \hat{W} in its Jordan form $\rightarrow \hat{W}$ is **diagonalizable** or the state will diverge.

- The spectrum:
	- \hat{W} is diagonalizable

 \rightarrow The eigenvalues are **negative** or the state will diverge.

• NESS:

Entries of \hat{W} are $e^{\lambda_i t}$ goes to zero as $t\to\infty$ if $\lambda_i < 0$ \rightarrow the only important entry is $e^{0t}=1$

 \rightarrow the NESS is the eigenvector of \hat{W} with $\lambda = 0$

DMRG for the SIS Model

- Variational problem: $\mathsf{min}_\mathcal{A}(\mathcal{A}^\dagger \hat{W}_{\mathsf{eff}} \mathcal{A} \lambda \mathcal{A}^\dagger \hat{N} \mathcal{A})$
	- \to Consider the gradient: $\nabla_{A^\dagger} (A^\dagger \hat{W}_{\text{eff}} A \lambda A^\dagger \hat{N} A) = 0$
	- \rightarrow Generalized eigenvalue problem: $\hat{W}_{\text{eff}} A = \lambda \hat{N} A$

From NRG to DMRG

• Consider a one-dimensional quantum chain:

Hilbert space: $\mathcal{H}=\bigotimes_{i=1}^N \mathcal{H}_i$ Dimension: $\dim \mathcal{H} = \prod_{i=1}^{N} \dim \mathcal{H}_i$, growing rapidly as N growing.

- The Numerical Renormalization Group (NRG) is a kind of numerical algorithm that can find the **groundstate** of a system.
- The key idea of NRG:

Truncation \rightarrow Add a new site \rightarrow Diagonalization \rightarrow Truncation −→ · · · −→ Until Convergence

From NRG to DMRG

- NRG works well in some impurity models but fails in **strongly** correlated systems. Whole= \sum Parts+?.
- The **entanglement effect**, related to many interesting phenomena, is not considered in NRG.
- In the density matrix renormalization group (DMRG), we use the density matrix to measure the entanglement entropy:

From NRG to DMRG

• Algorithms

Infinite-size DMRG Finite-size DMRG

<https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html>

€⊡

DMRG as Renormalization Group

• We can obtain the ground state by diagonalizing the infinite tensor:

This is impossible.

• We can consider the truncation to reduce the dimension of the MPO:

Variational Perspective of Finite-Size DMRG

- We want to find the ground state of a quantum state: Ground state energy: $\mathsf{inf}_{|\Psi\rangle} \frac{\langle \Psi | \hat{H} |\Psi\rangle}{\langle \Psi | \Psi \rangle}$ $\frac{\Psi|H|\Psi\rangle}{\langle\Psi|\Psi\rangle}.$ Optimization problem: $\min_{|\Psi\rangle} (\langle \Psi | \hat{H} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle).$
- The quantum state $|\Psi\rangle$ can be rewritten in **MPS**.
- In principle, we can solve it by implementing the variational method concerning all the tensors in MPS \rightarrow impossible in the computers \rightarrow implement tensor by tensor.
- Solve the variational problem $\textsf{min}_\mathcal{A}(\langle \Psi | \hat{H} | \Psi \rangle - \lambda \, \langle \Psi | \Psi \rangle) = \textsf{min}_\mathcal{A}(A^\dagger \hat{H}_{\text{eff}} A - \lambda A^\dagger \hat{N} A)$ A: variational parameter \hat{H}_eff : effective Hamiltonian, $\langle \Psi | \hat{H} | \Psi \rangle$ without $A,A^\dagger.$ \hat{N} : normalization matrix, $\langle \Psi | \Psi \rangle$ without A, A^{\dagger} .

つへへ

Variational Perspective of Finite-Size DMRG

- Variational problem: $\min_{A}(A^{\dagger}\hat{H}_{\text{eff}}A \lambda A^{\dagger}\hat{N}A)$
	- \to Consider the gradient: $\nabla_{A^\dagger} (A^\dagger \hat H_{\text{eff}} A \lambda A^\dagger \hat N A) = 0$
	- \rightarrow Generalized eigenvalue problem: $\hat{H}_\text{eff} A = \lambda \hat{N} A$

Conjugate gradient method

Gradient Descendent

Tangent space method

