Subgroup Meeting #3

Hao-Yang Yen

NTHU

2024/7/30

Hao-Yang Yen (NTHU)

Subgroup Meeting #3

2024/7/30

▲ 部 ▶ → ● 三

 $1 \, / \, 10$

DMRG for the SIS Model

- In ordinary quantum mechanics, the operators for the observables live in L(H, H), where H is a C−Hilbert space.
- In the SIS model, the linear operators also live in L(H, H), but here *H* is a ℝ−Hilbert space.
- The linear operators in the SIS model are not hermitian.
- Why does the DMRG work?

Is the Hamiltonian diagonalizable? What is the spectrum of the Hamiltonian? How to get the NESS from the Hamiltonian?

DMRG for the SIS Model

• Diagonalizability:

Master equation: $\partial_t |P(t)\rangle = \hat{W} |P(t)\rangle$ The state: $|P(t)\rangle = e^{t\hat{W}} |P(0)\rangle$ Write \hat{W} in its Jordan form $\rightarrow \hat{W}$ is **diagonalizable** or the state will diverge.

• The spectrum:

 \hat{W} is diagonalizable

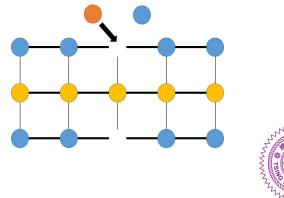
 \rightarrow The eigenvalues are **negative** or the state will diverge.

• NESS:

Entries of \hat{W} are $e^{\lambda_i t}$ goes to zero as $t \to \infty$ if $\lambda_i < 0$ \rightarrow the only important entry is $e^{0t} = 1$ \rightarrow the NESS is the **eigenvector of** \hat{W} with $\lambda = 0$

DMRG for the SIS Model

- Variational problem: $\min_A (A^{\dagger} \hat{W}_{eff} A \lambda A^{\dagger} \hat{N} A)$
 - \rightarrow Consider the gradient: $\nabla_{A^{\dagger}}(A^{\dagger}\hat{W}_{eff}A \lambda A^{\dagger}\hat{N}A) = 0$
 - \rightarrow Generalized eigenvalue problem: $\hat{W}_{eff}A = \lambda \hat{N}A$



From NRG to DMRG

• Consider a one-dimensional quantum chain:

Hilbert space: $\mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_{i}$ Dimension: dim $\mathcal{H} = \prod_{i=1}^{N} \dim \mathcal{H}_{i}$, growing rapidly as N growing.

- The Numerical Renormalization Group (NRG) is a kind of numerical algorithm that can find the groundstate of a system.
- The key idea of NRG:

 $\begin{array}{l} \mbox{Truncation} \to \mbox{Add a new site} \to \mbox{Diagonalization} \to \mbox{Truncation} \\ \to \dots \to \mbox{Until Convergence} \end{array}$

From NRG to DMRG

- NRG works well in some impurity models but fails in strongly correlated systems. Whole=∑ Parts+?.
- The entanglement effect, related to many interesting phenomena, is not considered in NRG.
- In the density matrix renormalization group (DMRG), we use the **density matrix** to measure the **entanglement entropy**:

From NRG to DMRG

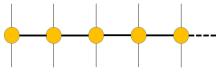
Algorithms

Infinite-size DMRG Finite-size DMRG

https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html

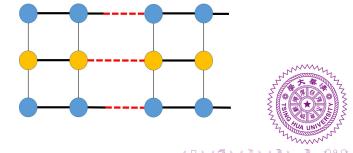
DMRG as Renormalization Group

• We can obtain the ground state by diagonalizing the infinite tensor:



This is impossible.

• We can consider the truncation to reduce the dimension of the MPO:



8/10

Variational Perspective of Finite-Size DMRG

- We want to find the ground state of a quantum state: Ground state energy: $\inf_{|\Psi\rangle} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$. Optimization problem: $\min_{|\Psi\rangle} (\langle \Psi | \hat{H} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle)$.
- The quantum state $|\Psi\rangle$ can be rewritten in MPS.
- In principle, we can solve it by implementing the variational method concerning all the tensors in MPS
 → impossible in the computers → implement tensor by tensor.
- Solve the variational problem $\min_{\mathcal{A}}(\langle \Psi | \hat{\mathcal{H}} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle) = \min_{\mathcal{A}}(\mathcal{A}^{\dagger} \hat{\mathcal{H}}_{eff} \mathcal{A} - \lambda \mathcal{A}^{\dagger} \hat{\mathcal{N}} \mathcal{A})$

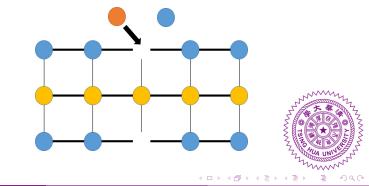
A: variational parameter \hat{H}_{eff} : effective Hamiltonian, $\langle \Psi | \hat{H} | \Psi \rangle$ without A, A^{\dagger} . \hat{N} : normalization matrix, $\langle \Psi | \Psi \rangle$ without A, A^{\dagger} .

Variational Perspective of Finite-Size DMRG

- Variational problem: $\min_A (A^{\dagger} \hat{H}_{eff} A \lambda A^{\dagger} \hat{N} A)$
 - \rightarrow Consider the gradient: $\nabla_{A^{\dagger}}(A^{\dagger}\hat{H}_{eff}A \lambda A^{\dagger}\hat{N}A) = 0$
 - \rightarrow Generalized eigenvalue problem: $\hat{H}_{eff}A = \lambda \hat{N}A$

Conjugate gradient method Gradient Descendent

Tangent space method



10 / 10