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Preface

——>0C—D0<—

This note is supplementary material for the 2025 Theoretical Mechanics course,

where I am serving as a TA. Vectors are the most elementary objects in physics,
especially for second-year majors beginning mechanics and electromagnetism, which
is why many textbooks open with vector analysis. Yet, despite the existence of
a mature and elegant framework in linear algebra, standard physics texts (e.g.,
Marion & Thornton; Griffiths) often retain older, less formal treatments, likely

reflecting when they were written.

Alongside teaching, I am conducting research in mathematical physics, and I
have come to appreciate how linear algebra underpins virtually all of theoretical
physics, including classical mechanics. Within our department, however, there is
no single course that systematically develops this beautiful and powerful theory.
That gap motivates me to teach core linear-algebra ideas to students in Theoretical

Mechanics.

In this note, I present a modern approach to linear algebra and a little bit of
abstract algebra, emphasizing the concepts most useful in physics and illustrating
them with physics examples and physically motivated examples. Besides teaching,
preparing these materials also allows me to revisit some foundational ideas. I
aim to share a more rigorous and contemporary perspective on vectors and linear
algebra—one that helps students solve physical problems more effectively and, I

hope, inspires some to pursue mathematical research in the future.
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Motivation and Background
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ERJ Vector Calculus (Physics Viewpoint)

1.1.1 Gradient, divergence, curl

1.1.2 Gauss theorem, Stokes theorem

Limitations of the “vector calculus” notation in
1.1.3 curvilinear coordinates

k¥ Linear Algebra Meets Calculus
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Differential Forms

——>0C—O0<—

FX] Concept of Manifolds (without topology)

In many physical systems, the configuration space is not the whole R3.
e A particle moving on a sphere: x? + y* + 22 = R?.
e A pendulum: described by an angle 6, not by (z,y) in R?.
e A rigid body: described by rotations (three angles, not three coordinates).

We still want to do calculus — take derivatives, define tangent vectors, and integrate

fields — on such spaces. This is why we need the concept of manifolds

A smooth manifold of dimension n is a space that, near every point, looks
like R™. This means we can choose local coordinates (!, ..., 2") around each
point, so that functions, derivatives, and vectors are defined just as in ordinary

multivariable calculus.



Chapter 2 — Differential Forms

Globally, the manifold may curve, twist, or wrap around itself, but locally the

mathematics is the same as in R".

Example 2.1: Sphere 5>

The surface of a sphere is 2-dimensional: locally we can use coordinates (6, ¢).
Calculus on S? (e.g. gradients, integrals) works the same way as in R?, using

these local coordinates.

Definition 2.2: Manifolds and coordinate charts

A smooth manifold M is locally described by coordinate charts
p:UCM—R", p (2 (p),...,2"(p)).

Each chart provides a local coordinate system (z!,..., 2™) in which we can
represent tangent vectors and forms. However, the geometric object itself — a

vector, a form, or a field — does not depend on which chart we use.

Remark 2.1: Charts without topology

In rigorous mathematics, a chart is a map from a patch of the manifold to an
open subset of R™. For our purposes, you can think of it as a “coordinate patch”
covering part of the surface. Different coordinate patches overlap smoothly,

just like different map projections of the Earth.

In physics, a manifold is simply a space where you can use coordinates locally, even

if you cannot describe it globally by a single coordinate system.



2.2 Tangent and cotangent spaces

F¥] Tangent and cotangent spaces

Definition 2.3: Tangent space in R"

At a point p € R", a tangent vector at p is the velocity 4(0) of some smooth
curve 7 : (—¢g,e) — R™ with v(0) = p. The set of all tangent vectors at p is a

vector space called the tangent space at p, denoted 7,R".

In standard coordinates x = (z!,... 2"), any curve v(t) = (z!(¢),...,2"(t)) with

_ dat da"

Thus T,R" can be identified with R" as a vector space, but conceptually it is

7(0) = p has velocity

=0

“attached” to the base point p.

Remark 2.2: Coordinate basis and directional derivatives

Let (z',...,2") be coordinates on an open set. At p, the vectors

9 9
ox! p’ 7\ Oxn »

form a basis of T, R", characterized by their action on smooth functions f via

(aii)p[f] = gj;-

Any v € T,R" may be written v = >, v*(9/02"), and acts on f by v[f] =
>0t (0f /0x"),.

Example 2.2: Tangent plane to a surface

Let a surface in R? be given as a level set F(z,y,2) = 0 with VF(p) # 0.
Then the tangent plane at p is

directional derivatives:

T,S={veT,R|VF(p)-v=0}
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Equivalently, if S is parametrized by ®(u,v), then 7,5 = span{g—i’, %—f at

p = P(ug,vp).

The cotangent space at p, denoted 7;R", is the space of all linear maps (also

called covectors or 1-forms at p)
wp : T,R" = R.

There is a natural pairing (w,, v) := w,(v) between covectors and vectors.

Remark 2.3: Coordinate 1-forms

The differentials dz?!,...,dz™ at p form the dual basis of T,R", defined by
dz?((8/0x7),) = 6%;. Any 1-form can be written w = Y, w; dz’.

FXE] Charts and Vectors in Physics

Theorem 2.1: Chart-change (Jacobian) law for vectors and covectors

Let (z',...,2") and (&',...,2") be two smooth coordinate systems on an

overlap region of M, with & = Z(z) a smooth change of variables. At p € M,

write the Jacobian and its inverse as

0w o

Ty i= 22, (Y.

Then:

1. (Vectors are contravariant.) If v € T,M has components v’ in a-




2.3 Charts and Vectors in Physics

Example 2.3: Chart change and the meaning of vector components
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Applying the chain rule,

0 . 0 . . 0 0
Pl stcosgb% —i—sm@smqﬁa—y —i—COSQ&,

and similarly for % and a%' Thus, the components of the same geometric

vector in the two charts are related by the Jacobian:

T T

v sinfcos¢ rcosfcos¢p —rsinfsing v
vY | = | sinflsing rcosfsing rsinfcoso v?
0? cos 6 —rsin 6 0 v?

Although the numerical components change with coordinates, the geometric
vector v itself is the same object: a tangent direction at the point p.

Similarly, a covector (1-form)
w=wydz +w,dy + w,dz = w, dr + wp df + wy, do

transforms with the inverse Jacobian, so that the pairing w(v) = w;v® is
invariant under the change of chart.
Changing coordinates only reshuffies the components. The physical or geomet-

ric quantity itself does not change.

Consider Cartesian (x,y, z) and cylindrical (p, ¢, z) related by

X = pcos o, y = psin ¢, z=2z.

Vector components (contravariant). Write the same geometric vector v as



2.3 Charts and Vectors in Physics

Using the chain rule,

0 0 . 0 0 . 0 0 0] 0
a—poOS(ﬁ%—ksmqﬁa—y, a—¢:—p81n¢a—x+pcos¢a—y, Pl
Hence

v* cos¢ —psing 0 vP
v | = |sing pcosg Of | v?
v? 0 0 1 V?

(. J/

Jacobian 8(;,;,2)/8(/),(15,,2)
Although the numbers change with the chart, the vector v itself does not.

Covector (1-form) components (covariant). Let
w=w;dr + w,dy + w,dz = wpdp+w¢d¢+wgcyl)dz.

First express differentials:

—sin ¢ coSs ¢

dp = cos ¢ dx + sin ¢ dy, do = dx + dy, dz =dz.

Comparing coefficients gives the inverse-Jacobian law

—sin coS
W, = COS pwy + sin P wy, Wy = ¢ by - ¢ Wy, W =,
p p

so the pairing w(v) is chart-invariant.

Volume and area forms. The standard volume form transforms by the

Jacobian determinant:
dV =dz Ady Adz = pdp Adop Adz.
Typical oriented area elements:
plane z = const: dS =dx Ady = pdp A do,
cylinder p=R: dS=Rd¢pAdz (outward normal).

Physical takeaway. In cylindrical coordinates the ¢-direction basis 6% has
length scale p, so components along ¢ naturally carry a factor p. This is a

chart effect, not a change of the underlying physical vector or 1-form.
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Remark 2.4: Bases transform dually

Coordinate vector fields and 1-forms transform as

9 (0 ~j i Qi i i 30
(axi) - J]"(%) , 4% =Jidz,  dz, = K dE
p p

Thus components transform with J or K = J~! so that the pairing dz'(;%) =

&'; stays intact.

Corollary 2.1: General tensor chart-change rule

A (k, 0)-tensor T has components 7%, ., in z-coords and T %, 4, in

Z-coords related by

Fa1---a a a i ] 911
T il kbl--'bg — J 11'1 J kik: Kjlbl "'Kﬂbe Tl k .

Jiger

Contravariant indices pick up J; covariant indices pick up K = J 1.

Proposition 2.1: Top-degree forms and Jacobians

For an n-form €2 in n dimensions,
Q=0 ndZ A AdE" = Q. det(J)dELA -+ A dE™

In particular, the standard volume form transforms by the determinant:

1
dz' A+ Ada™ = det(K)di' A~ AdF" = dzt Ao AdE™
det(J)

In R3 let & = (r,0,¢) with x = rsinfcos¢, y = rsinfsing, z = rcosf.
Compute J7; = 977 /0" or equivalently K = 0x/0% and get det(K) = r?sin 6.
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Hence, the Euclidean volume form becomes
dV =dz Ady Adz = r’sin@dr A df A de.
Restricting to the sphere r = R gives the area 2-form
dSg: = R*sin6dé A do,
which matches the familiar surface element from vector calculus.

A passive change of chart re-expresses the same geometric vector with new com-
ponents (via J and K). An active transformation would move the vector or point
itself. In this section, we only used the passive, coordinate-change picture—exactly
what ensures that physical laws (equations between tensors) are form-invariant in

any coordinates.
In summary,
e Vectors: © = J v (contravariant).

Covectors: w = K'w or &; = K'jw; (covariant).

Pairing invariant: w(v) unchanged.

n-forms or volume: pick up det of the Jacobian of the coordinate map.

Tensors (k, £): each upper index gets a J, each lower index a K = J~1.

At each point p € M, a tangent vector v € T, M acts as a directional derivative:

: Of
oxt’

o=

7

11
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If we change coordinates from z* to 7/ = 7/(x), the components transform as

)i
- ozt

)

V.

3 =

Thus, v is the same geometric entity even though its components change.

In physics, a vector quantity such as velocity or force is often visualized as an
arrow in space. Mathematically, it is a coordinate-independent object living in the
tangent space 1, M. The components (v*,v¥, v*) depend on the chosen coordinates,

but the vector itself does not.

This explains why physical laws written in vector form (e.g. F = ma, Maxwell’s
equations) must hold in all coordinate systems: they are statements about geometric

objects, not about their components.

Suppose a particle moves on a sphere of radius R. In Cartesian coordinates
(x,y, z) its velocity vector has components (&, y, 2). In spherical coordinates
(0, ¢), the same velocity is expressed as

. 0 ., 0
v:R9@+Rsm9gbw.

The change of components reflects only the change of chart, not a change in

the physical velocity.

Remark 2.5: Covectors and coordinate transformations

Similarly, 1-forms transform with the inverse Jacobian:

_ ox’

= — W;.
— 033 "
3

w

This dual behavior ensures that the pairing w(v) = >, w;v' is invariant under

12



2.4 Vector fields

coordinate changes.

Vector fields

A vector field on a smooth space M assigns to each point p € M a tangent
vector V(p) € T, M, smoothly depending on p. Equivalently, a vector field is a

derivation on smooth functions:
Vi C®(M)—C>(M),  V[fllp)=V®)fl],
linear over R and satisfying the Leibniz rule V[fg| = fV]g] + g V[f].

In local coordinates (x',...,z") on an open set U C M, a vector field reads

V=>V - e,
ZZ:; (@) Oz’ ’
where the component functions V* are smooth (C*°). Under a chart change

x — Z(z) with Jacobian J7; = 937 /0x', components transform contravariantly:

VIi(E) = Ji(z) Vi(x).

Thus, V is a coordinate-independent geometric object, even though its components

change.

Remark 2.6

Some physics textbooks use this coordinate-independent geometric property
to define what vectors are. But in a more modern viewpoint, this is only a

result of a change in the chart.

13
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Example 2.7: Basic examples in R?

e Uniform field: V =a % 81: +05; 0 s tea, a with constants a, b, c.

e Rotation about the z-axis: V = —y+ 8m +zg (generates planar
rotations).

e Radial field: V = am IF W= ay +z3; (pomts outward, scales with
radius).

Example 2.8: Cylindrical coordinates (p, ¢, z)

With z = pcos ¢, y = psin ¢, z = z, the coordinate vector fields are

0 0 0 0 0

0 i 0 :
——Cosgb%—l—smgba—, —p51n¢%+pcos¢a—y, —_ =,

dp ¢ a 0z 0z
Hence the same vector field may be written
0 0 0 0 0 0
V:V— Ve — VZ =V— VY —+V*—
ap + 0¢p + ox + dy i 0z’
with components related by
Ve cos¢p —psing 0 4
VY| =|sing pcos¢ O %44
V= 0 0 1 V=

The ¢-component carries a factor p because the basis vector 0/0¢ has length

scale p.

Remark 2.7: Action on functions and gradient pairing

Given a scalar field f € C°°(M) and a vector field V', the directional derivative
along V' is the new scalar field V[f]. If df denotes the 1-form (covector field)

14



2.5 From vectors to covectors

differential of f, then

ﬁvi

Vil =WV =Y 5

in any coordinates. This pairing is coordinate-invariant.

An integral curve of V is a curve «(¢) satisfying §(¢) = V(y(¢)) with initial
condition v(0) = p. Locally (under mild conditions) there exists a flow ®,

generated by V' such that

Cb(p) = V@) and By =id

Physically, V' may represent a velocity field and ®; the motion of tracers.

e Velocity field v(z) in fluid flow: the integral curves are particle paths.

e Force field F(z) for a charged particle (with given dynamics): in-
tegral curves approximate trajectories in configuration space when

reparametrized appropriately.

e Angular velocity field for a rigid rotation: V = w X r.

FX3] From vectors to covectors

Physics frequently identifies gradients with wvectors through the Euclidean dot
product, but in differential geometry the primary object is the differential of a

function.

15
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Definition 2.8: Differential of a function

For a smooth f : R" — R and p € R", the differential df, € T/R" is the

linear map

df,(v) == v[f] = Zn:vi g;, v = Z”i(aii)p'

=1 A

In coordinates, df = 3, 2L da’.

i Oxt

Remark 2.8: Gradient and differential

Given an inner product (metric) g on 7,R", the musical isomorphism v + v’
sends a vector to a covector via v’(-) = g(v,-). The gradient V£ is the unique
vector with g(Vf,-) = df(), i.e., df = (Vf)". In Euclidean space with the
standard dot product, this reduces to the familiar identification df = V f - dz.

Example 2.10: Linear function

Let f(z) = aja' +---+azz™. Thendf =Y, a;dz’. For any v =), v"(9/0x"),
we have df(v) = >, a0’

Example 2.11

Show that d(fg) = fdg+gdf andd(¢ o f) = ¢'(f)df for smooth f,g: R" —
R and ¢ : R — R.

2.5.1 Application: work form F - dx

In vector calculus, the work along a curve v : [a,b] — R" under a force field
F:R"— R"is ,
W = /F ~dx = / F(y(t)) - A(t) dt.
¥ a

16



2.5 From vectors to covectors

Define the associated 1-form (the work form)

w:=F-dx= Z Fi(x)da’.

=1

Then the line integral is simply the integral of the 1-form w along

W = / w.
v
Example 2.12: Circulation around a circle in R?

Let F(z,y) = (—y,z) on R% Then
w=F- -dr=—ydr+ xdy.

Take the unit circle y(t) = (cost,sint), t € [0,27]. Compute

/vw = /027T (— sint (—sint) + cost(cost))dt (2.1)

27
= / (sin®t + cos? t) dt = 2. (2.2)
0
Remark 2.9: Closed and exact (preview)
Write w = —ydz + xdy. In R2 the exterior derivative of a 1-form w =
Pdz+ Qdy is
oQ 0P
dw=|5=— | dzAdy.
< or Oy ) rasy

Here dw = (1 —(—1))dz Ady = 2dxz Ady # 0, so w is not closed and hence not
exact; accordingly, its integral around a loop can be nonzero. This foreshadows

Stokes’ theorem.
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Let FF = V¢ for a smooth potential ¢ : R* — R. Then w = F'-dz = d¢ is

ezract. For any curve 7,

[/ . / 46 = 6(1(5)) — 6(+(a)),

so the work depends only on endpoints.

Let F(z,y,2) = (y,—,0) on R® and w = F - dz.

(a) Compute V X F' and verify that dw corresponds to V X F' via the usual

identification between 2-forms and pseudovectors in R3.

(b) Evaluate &lg w around the unit circle in the zy-plane and relate it to
g
1. ¢ dw over the unit disk using Stokes’ theorem.

FX3 Higher-degree forms

A k-form on R” is a smooth, multilinear, antisymmetric map
wp : (TR — R

that assigns a real number to each ordered k-tuple of tangent vectors at p. In
coordinates, any k-form can be expressed as a linear combination of wedge

products of the coordinate 1-forms:

w= Z Wiy, (2) dz™ A -+ A da™,

1<ip<-<ig<n

18



2.6 Higher-degree forms

where the coefficients w;,...;, () are smooth functions.

Remark 2.10: Wedge product

Given a p-form « and a g-form 3, their wedge product A is a (p+ ¢)-form
defined by

1
(@nB)(v1, ..., Uprq) = p'_q' Z sgn(0) Vo), - - - Vo(p)) B(Va(p+1); - - -5 Va(p+q))-

0€Sp4q

It is bilinear and graded-antisymmetric:

aNf= (=DM Aa.

Example 2.15: Area 2-form in R?

n R3, the basic 2-forms are dz A dy, dy A dz, and dz A dz. A general 2-form is
w=PdyNndz+ QdzAdz+ Rdx Ady,

where (P, @, R) are smooth functions. The correspondence with a pseudovector
F = (P,Q, R) is what allows us to identify dw with V - F later.

Example 2.16: Volume form

In R?, the standard volume form is
dV =dx Ady A dz.
For three vectors vy, va, v3 € T,R3,
dV (v, va,v3) = detfvy vy v3],

which gives the oriented volume of the parallelepiped they span. In R", the
corresponding form is dV = dz! Ada? A --- A dz™.
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Remark 2.11: Interpretation

e 1-forms <— line elements, integrated along curves.

e 2-forms <— oriented area elements, integrated over surfaces.
e 3-forms <— volume elements, integrated over regions.
The exterior derivative d connects them:
O-forms (functions) 4y 1forms & 2-forms —&» 3-forms, d* = 0.

This hierarchy underlies the integral theorems of vector calculus.

Exterior Derivative and Vector Calculus

The exterior derivative d is an operator that maps k-forms to (k + 1)-forms,
d: Q"R") — QT (R"),

characterized by the following properties:

of
t Oxt

1. For a function (0-form) f, df =>_ da’".
2. For general w and 7,
dwAn) =dwAn+ (=1)*wAdy,

if wis a k-form.

3. d(dw) = 0 for all w (that is, d* = 0).

20



2.7 Exterior Derivative and Vector Calculus

Let w =), fida' be a 1-form. Then

dw:z (0;1 — 8a:j)dx A da?.

i<j

Similarly, for a 2-form w =37, _. fi; da’ A da/,

o af]k asz afz_j i j k
dw= )" (axi + 55 5o | dof Adad Adat

i<j<k

One of the main advantages of differential forms is that the familiar vector calculus
operators V, Vx, V- can all be unified through the differential forms. This is
the theoretical foundation of the modern viewpoint of vector analysis. We first

take a glance at these three operators in differential forms.

e Gradient as a 1-form. Let f be a scalar function (a 0-form). Its exterior

derivative is

of of of 4
d+8d+8z

This is exactly the gradient of f, but expressed as a covector (1-form).

df =

e Curl as the derivative of a 1-form. Let A = A,dz + A,dy + A.dz be a
1-form. Then

04, 04,
A=
d ( By 5 )dy/\dz

0A, B 0A,
0z ox
(222

)dz/\dx

I ay)dﬁ/\dy.

This 2-form encodes the curl of A. Under the identification between 2-forms

and pseudovectors in R3, this is precisely V x A.

21
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e Divergence as the derivative of a 2-form. Let B = B, dy Adz+ B, dz A
dx + B, dx A dy be a 2-form. Then

0B, OB, OB,
(w_<3x+8y+8z

>dx/\dy/\dz.

This is a 3-form representing the divergence V - B.

Actually, we can identify these three differential form through some vector identities

that we are familiar with:

Gradient: /bdf = /b Vf-dr= f(b)— f(a),

Curl: A-dlz//VxA-dS://dA,
s S S

Divergence: # B-dS = // V- -BdV = /// dB.
ov v 1%
Remark 2.12: Geometric meaning

The exterior derivative measures the “infinitesimal circulation” or “flux density”

of a form. It generalizes the gradient, curl, and divergence:

0-form: f N Vf-dr,
lform:  A-dr -5 (VxA)-(dS),
d

2-form: B-(dS) — (V-B)dV.

Here dS represents the oriented surface element (a 2-form), and dV' the volume

form (a 3-form).

Example 2.18: Recovering familiar vector identities in R?

o If w=df (al-form), then dw = d(df) = 0 corresponds to V X (V f) = 0.

e If w=F-dzx (a 1-form), then dw corresponds to V X F.

22



2.7 Exterior Derivative and Vector Calculus

o If w=F-(dS) (a 2-form), then dw corresponds to V - F'.
Thus, the identity d? = 0 encodes the classical vector calculus results:

V x (Vf)=0, V- (VxF)=0.

A form w is called closed if dw = 0, and exact if there exists another form 7
such that w = dn. Since d? = 0, every exact form is automatically closed, but
not every closed form is exact. This subtlety lies at the heart of topology (de

Rham cohomology) and thermodynamics in physics.

Theorem 2.2: Exterior derivative and vector calculus in R3

Let U C R3 be an open set. Then the sequence of exterior derivatives
Q(U) —2— QL (U) —— Q*(U) —2— Q3(U)
corresponds to the sequence of vector calculus operators
CoU) —— X(U) —2— 2(U) —LZ— C=(V),
where
e OF(U) is the space of smooth differential k-forms on U,
e C°°(U) is the space of smooth functions on U,
e X(U) is the space of smooth vector fields on U.
More explicitly, we write
O-form f 4., df «+— V/,
lform A —%— dA «— V xA,

2-form B L> dB +— V-B.

23
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Corollary 2.2

The property d? = 0 encodes familiar vector calculus identities:

Vx(Vf)=0, V-(VxA)=0.

Remark 2.13: Geometric meaning of k-forms

A differential k-form assigns an oriented density to a k-dimensional object:
e O-form: scalar field (value at each point).
e 1-form: oriented line density (acts on tangent vectors).
e 2-form: oriented surface density (acts on pairs of tangent vectors).
e 3-form: oriented volume density.

Each form type naturally integrates over an object of matching dimension.

Example 2.19: 1-forms as line densities

A 1-form w = Pdz + Q dy in R? assigns to a vector v = (v, v,) the number

w(v) = Pv, + Qu,. This represents the infinitesimal work done by a field
F = (P,Q) on a displacement dx = vdt. Thus, integrating w along a curve

measures total work.

Example 2.20: 2-forms as flux densities

A 2-form w = Rdy Adz + Sdz Adz + T dx A dy in R? naturally corresponds
to a vector field F = (R, S,T). If vy, vs span a surface patch, then

w(vy,v2) =F - (v1 X v9)

is the oriented flux through that infinitesimal patch. Hence / w gives the
s
total flux of F through S.




2.7 Exterior Derivative and Vector Calculus

Example 2.21: 3-forms as volume densities

3-form such as w = f(z,y,2)dx A dy A dz represents a scalar density that

integrates to a volume or total quantity:

/ f(z,y,z)dxdydz.
1

For instance, if f is a mass density, this gives the total mass.

Remark 2.14: The operator d as “boundary detector”

The exterior derivative d measures how a k-form changes across space, capturing

oriented “flow through the boundary.”
e d of a 0-form (a scalar field) gives its gradient.
e d of a 1-form measures rotational tendency (curl).
e d of a 2-form measures expansion (divergence).

Thus, d transforms local infinitesimal data into the boundary behavior that

Stokes’ theorem then integrates globally.

)
In]tegrate w = F -dz along v

7(7/%} F

N

Thus, the operators gradient, curl, and divergence are unified into a single operation:

the exterior derivative d.
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Chapter 2 — Differential Forms

Remark 2.15: Unified picture

The hierarchy of forms and d can be summarized as:

fooS vidr S (VxA)-dS) L (VB)AV

0-form 1-form 2-form 3-form

and the corresponding integral theorems:

b
Line: / df = f(b) — f(a), (Fundamental theorem)

Surface: 515 w= // dw, (Stokes’ theorem)
as s

Volume: // w= /// dw, (Divergence theorem).
av 1%

All are manifestations of the single geometric identity

/ w=/ dw.
oM M
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3

Integration of Differential Forms

>0 (C—— o<

After discussing how useful the differential forms are in vector analysis, we move

to another important application of differential forms— integration.

EX] Orientation and inteqration domains

In physics, integrals of vector fields often measure flow or circulation. For
instance, the flux of a magnetic field through a loop or the total current through a
surface both depend not only on the magnitude of the field but also on the chosen
direction of measurement. To define such quantities consistently, we must specify
what “positive direction” means on a curve, surface, or volume. This leads naturally

to the notion of orientation.

An orientation on a k-dimensional manifold M is a consistent choice of which

ordered bases of T, M are “positive” at every point. For example:

e In R, the direction of increasing x defines the positive orientation.

e In R? the orientation of (9/dz,d/dy) defines the standard counterclock-
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wise sense.

e In R3, (0/dz,0/0y,d/0z) gives the standard right-handed orientation.

Remark 3.1: Why orientation matters

Changing orientation multiplies all integrals of top-degree forms by —1. A
k-form can be integrated over a k-dimensional oriented manifold only when

the orientation of the domain and of the form agree.

E¥] Integration via pullback

Having established the role of orientation, the next step is to formalize how to
compute these oriented integrals. Physically, this corresponds to expressing a
curved wire, surface, or volume using local coordinates — just as one parametrizes
a membrane by (u,v) to compute its flux. Mathematically, this change of variables

is encoded by the pullback of differential forms.

Let ® : U C R¥ — R” be a smooth map and let w be a k-form on R”. The
pullback ®*w is the k-form on U defined by

(®*w)u(v1, - . ., k) = Wagw) (DP)u(v1), ..., (DP)y(vk)).

In coordinates, if w =Y (z)dz™* A -+ Adx®, then

1< <ip wllzk

Cw= Y Wi (®(u) d(®) A Ad(PH).

1< <ig
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3.2 Integration via pullback

Definition 3.3: Integral of a k-form

Let M be an oriented k-dimensional manifold parametrized by ® : U ¢ RF —
M. If wis a k-form on M, its integral over M is defined by

/wz/@*w.
M U

Example 3.1: Line integral of a 1-form

Let w = F' - dx be a 1-form on R", and let ~ : [a,b] — R™ be a curve. Then

fo=] yw= [ Faw)-0

which is the familiar line integral from vector calculus.

Example 3.2: Surface integral of a 2-form
Let S C R? be a surface parametrized by ®(u,v) and let
w=PdyAndz+ Qdz Adx + Rdx A dy.

Then
ob 09

CI)*(,U:(P,Q,R)' (% X %) dU/\d’U,

/Swz//U(P,Q,R)- (g—i’ < g—f) du do.

This is exactly the oriented flux of the vector field (P, @, R) through S.

so that

Example 3.3: Volume integral of a 3-form

For a 3-form w = f(x,y,z)dx Ady A dz and a region V C R3,

/Vw = //Vf(:v,y,z)dxdydz.
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Remark 3.2: Orientation reversal

If ® reverses orientation (for instance, swapping two coordinates), then ®*w

picks up a negative sign, hence

fiom L

This ensures that Stokes’ theorem holds consistently under orientation change.

These examples show that integrating forms reproduces all familiar integrals in
vector calculus. But the real power of differential forms emerges when we observe
that all these separate theorems — for work, flux, and divergence — share one
common geometric structure. This leads to the generalized Stokes’ theorem,

which unifies them under a single principle of conservation.

EX] Stokes’ theorem revisited

Theorem 3.1: General Stokes theorem

et M be an oriented k-dimensional manifold with boundary OM, and w a

(k — 1)-form on M. Then
/ w= / dw.
oM M

e For k =1 (intervals in R): Fundamental theorem of calculus.
e For k = 2 (surfaces in R3): Stokes’ theorem for curl.

e For k = 3 (volumes in R*): Divergence theorem.

All are instances of |, oW = i) o dw.
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3.3 Stokes’ theorem revisited

Example 3.5: Curl and flux

Let w = F - dx with F(z,y,2) = (y,—z,0) on R®. Then
dw=(V X F)-(dS) = (0,0,—2) - (dS) = —2dz A dy.

Consider M to be the unit disk 22 + y? < 1 in the zy-plane. Then OM is the

unit circle, oriented counterclockwise. By Stokes’ theorem:

% cu:/ dw:// (—=2)dzdy = —27.
OM M x24+942<1

If the boundary orientation were reversed (clockwise), the result would be
+2m.

Remark 3.3: Geometric unification

Differential forms and the exterior derivative provide a single, coordinate-free

language for all integral theorems of vector calculus:
e line, surface, and volume integrals are just integrations of forms
e gradient, curl, and divergence are all special cases of exterior derivatives.

This unification is one of the key insights that make differential geometry so

powerful in physics.

Remark 3.4: Physical interpretation of Stokes’ theorem
In every domain of physics, Stokes’ theorem expresses a conservation law:
“flux through the boundary” = “accumulation inside”.

For instance:

d
e Faraday’s law: % E-dx = 0 // B - dS, linking electric circulation
s s

to changing magnetic flux;
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e Gauss’s law: // E - dS = 47Qiuside;
v

e Fluid continuity: /

pv~d5:/ V- (pv)dV.
ov 1%

Each of these is simply an instance of |, o W= Il 1 dw, showing that differential

forms capture the geometric heart of physical laws.
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Applications in Physics

—_—> 00— 0<

Electromagnetism in differential forms

Remark 4.1: Motivation

Maxwell’s equations take their most elegant and compact form when written in
the language of differential forms. The entire set of four equations in vacuum

can be expressed as two differential-form equations:

dF =0, dxF=J

In spacetime with coordinates (¢, z,y, z), define the field strength 2-form

F=FE,de Ndt+ E,dy Ndt + E,dz A dt
+ Bydy ANdz + By dz Adx + B, dz A dy.

The electric field components appear with dt, and the magnetic field components

appear as spatial area elements. This unifies E and B into one geometric object.
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Chapter 4 — Applications in Physics

Applying dF' = 0 gives the two homogeneous Maxwell equations:

V.-B=0,

VXE+8tB:0

The first expresses the nonexistence of magnetic monopoles; the second expresses

Faraday’s law of induction.

The dual form xF' (using the Hodge star in Minkowski space) is a 2-form that

contains the fields (B, E) in reversed roles. The second Maxwell equation,
dx F =J,
expresses both Gauss’s and Ampére-Maxwell laws:
V-E=p,
VxB-0E=1J.
Here J is the current 3-form,

J=pdx ANdyANdz — J,dy Adz Adt
—Jydz Adx Adt — J.dx Ady A dt.

Remark 4.2: Charge conservation

Applying d to both sides of d x F' = J gives dJ = 0 (because d? = 0), which is

precisely the local continuity equation

dp
o tV-I=0

Thus charge conservation is a geometric identity rather than a separate law.
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4.2 Fluid flow and vorticity forms

Remark 4.3: Lorentz invariance and compactness

In differential-form language, Maxwell’s equations are manifestly Lorentz

invariant and coordinate-free. The electromagnetic field is encoded in a single
2-form F', and its dynamics follow from dF' = 0 and d x F' = J—a dramatic

simplification from four vector equations.

Fluid flow and vorticity forms

Definition 4.1: Velocity field and vorticity 2-form

Let v(z) be a smooth velocity field in R®. The associated 1-form is v” =

vy dz 4+ v, dy + v, dz. Its exterior derivative,
w=dv’ = (Vxv),dyAdz + (V x v),dz Adz + (V x v), dz A dy,

is the vorticity 2-form.

This form measures the infinitesimal rotation of the fluid. Integrating w over a

surface gives the total circulation through that surface.

Example 4.1: Kelvin’s circulation theorem

n an ideal incompressible fluid, if the flow is governed by an exact form w = dv’

with dw = 0, then the circulation

hor= 11

is conserved as the surface moves with the fluid.
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Chapter 4 — Applications in Physics

Remark 4.4: Analogy to electromagnetism

The mathematical structure of fluid vorticity parallels that of the magnetic
field:

Electromagnetism Fluid flow
1-form: A 1-form: »”
2-form: F=dA 2-form: w = dv”
Flux conservation: dF' = 0 | Vorticity conservation: dw = 0

This correspondence helps physicists see field theory and fluid dynamics as

instances of the same geometric framework.

IXE] Conservation laws as closed forms

A current k-form J satisfies dJ = 0. If M is a (k + 1)-dimensional region
with boundary 0M, Stokes’ theorem implies

[ 1= ar=o
oM M

Thus, the total flux of J through the boundary vanishes— the geometric

expression of a conservation law.

In electrodynamics, J is the charge—current 3-form. Because dJ = 0, the

total charge in any region changes only by the amount of current crossing its

d
< pdV:—// J-ds.
dt Jy oV

boundary:
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4.3 Conservation laws as closed forms

Remark 4.5: Unified perspective

Differential forms provide a natural framework for modern physics:

e Classical mechanics: Work 1-form F' - dz, symplectic 2-form in phase

space.
e Electromagnetism: Field strength 2-form F' and its dual % F'.
e Fluid mechanics: Vorticity 2-form dv’.

¢ Relativity and field theory: Conservation currents as closed forms
dJ =0.

Each fundamental conservation law is simply the statement that a certain

differential form is closed.
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