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Preface

This note is supplementary material for the 2025 Theoretical Mechanics course,
where I am serving as a TA. Vectors are the most elementary objects in physics,
especially for second-year majors beginning mechanics and electromagnetism, which
is why many textbooks open with vector analysis. Yet, despite the existence of
a mature and elegant framework in linear algebra, standard physics texts (e.g.,
Marion & Thornton; Griffiths) often retain older, less formal treatments, likely
reflecting when they were written.

Alongside teaching, I am conducting research in mathematical physics, and I
have come to appreciate how linear algebra underpins virtually all of theoretical
physics, including classical mechanics. Within our department, however, there is
no single course that systematically develops this beautiful and powerful theory.
That gap motivates me to teach core linear-algebra ideas to students in Theoretical
Mechanics.

In this note, I present a modern approach to linear algebra and a little bit of
abstract algebra, emphasizing the concepts most useful in physics and illustrating
them with physics examples and physically motivated examples. Besides teaching,
preparing these materials also allows me to revisit some foundational ideas. I
aim to share a more rigorous and contemporary perspective on vectors and linear
algebra—one that helps students solve physical problems more effectively and, I
hope, inspires some to pursue mathematical research in the future.

v





Chapter

1

Motivation and Background

1.1 Vector Calculus (Physics Viewpoint)

1.1.1 Gradient, divergence, curl

1.1.2 Gauss theorem, Stokes theorem

1.1.3
Limitations of the “vector calculus” notation in
curvilinear coordinates

1.2 Linear Algebra Meets Calculus
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Chapter

2

Differential Forms

2.1 Concept of Manifolds (without topology)

In many physical systems, the configuration space is not the whole R3.

• A particle moving on a sphere: x2 + y2 + z2 = R2.

• A pendulum: described by an angle θ, not by (x, y) in R2.

• A rigid body: described by rotations (three angles, not three coordinates).

We still want to do calculus — take derivatives, define tangent vectors, and integrate
fields — on such spaces. This is why we need the concept of manifolds

Definition 2.1: Manifolds (physics version)

A smooth manifold of dimension n is a space that, near every point, looks
like Rn. This means we can choose local coordinates (x1, . . . , xn) around each
point, so that functions, derivatives, and vectors are defined just as in ordinary
multivariable calculus.
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Chapter 2 – Differential Forms

Globally, the manifold may curve, twist, or wrap around itself, but locally the
mathematics is the same as in Rn.

Example 2.1: Sphere S2

The surface of a sphere is 2-dimensional: locally we can use coordinates (θ, ϕ).
Calculus on S2 (e.g. gradients, integrals) works the same way as in R2, using
these local coordinates.

Definition 2.2: Manifolds and coordinate charts

A smooth manifold M is locally described by coordinate charts

φ : U ⊂M → Rn, p 7→ (x1(p), . . . , xn(p)).

Each chart provides a local coordinate system (x1, . . . , xn) in which we can
represent tangent vectors and forms. However, the geometric object itself — a
vector, a form, or a field — does not depend on which chart we use.

Remark 2.1: Charts without topology

In rigorous mathematics, a chart is a map from a patch of the manifold to an
open subset of Rn. For our purposes, you can think of it as a “coordinate patch”
covering part of the surface. Different coordinate patches overlap smoothly,
just like different map projections of the Earth.

In physics, a manifold is simply a space where you can use coordinates locally, even
if you cannot describe it globally by a single coordinate system.
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2.2 Tangent and cotangent spaces

2.2 Tangent and cotangent spaces

Definition 2.3: Tangent space in Rn

At a point p ∈ Rn, a tangent vector at p is the velocity γ̇(0) of some smooth
curve γ : (−ε, ε)→ Rn with γ(0) = p. The set of all tangent vectors at p is a
vector space called the tangent space at p, denoted TpRn.

In standard coordinates x = (x1, . . . , xn), any curve γ(t) = (x1(t), . . . , xn(t)) with
γ(0) = p has velocity

γ̇(0) =

(
dx1

dt
, . . . ,

dxn

dt

) ∣∣∣
t=0

.

Thus TpRn can be identified with Rn as a vector space, but conceptually it is
“attached” to the base point p.

Remark 2.2: Coordinate basis and directional derivatives

Let (x1, . . . , xn) be coordinates on an open set. At p, the vectors(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

form a basis of TpRn, characterized by their action on smooth functions f via
directional derivatives: (

∂

∂xi

)
p

[f ] ≡ ∂f

∂xi
.

Any v ∈ TpRn may be written v =
∑

i v
i(∂/∂xi)p and acts on f by v[f ] =∑

i v
i (∂f/∂xi)p.

Example 2.2: Tangent plane to a surface

Let a surface in R3 be given as a level set F (x, y, z) = 0 with ∇F (p) ̸= 0.
Then the tangent plane at p is

TpS = { v ∈ TpR3 | ∇F (p) · v = 0 }.
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Chapter 2 – Differential Forms

Equivalently, if S is parametrized by Φ(u, v), then TpS = span{∂Φ
∂u
, ∂Φ

∂v
} at

p = Φ(u0, v0).

Definition 2.4: Cotangent space and 1-forms

The cotangent space at p, denoted T ∗
pRn, is the space of all linear maps (also

called covectors or 1-forms at p)

ωp : TpRn → R.

There is a natural pairing ⟨ωp, v⟩ := ωp(v) between covectors and vectors.

Remark 2.3: Coordinate 1-forms

The differentials dx1, . . . ,dxn at p form the dual basis of T ∗
pRn, defined by

dxi
(
(∂/∂xj)p

)
= δij. Any 1-form can be written ω =

∑
i ωi dx

i.

2.3 Charts and Vectors in Physics

Theorem 2.1: Chart-change (Jacobian) law for vectors and covectors

Let (x1, . . . , xn) and (x̃1, . . . , x̃n) be two smooth coordinate systems on an
overlap region of M , with x̃ = x̃(x) a smooth change of variables. At p ∈M ,
write the Jacobian and its inverse as

J j
i :=

∂x̃j

∂xi
, (K)ij :=

∂xi

∂x̃j
= (J−1)ij.

Then:

1. (Vectors are contravariant.) If v ∈ TpM has components vi in x-
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2.3 Charts and Vectors in Physics

coordinates and ṽj in x̃-coordinates, then

ṽj = J j
i v

i.

2. (Covectors are covariant.) If ω ∈ T ∗
pM has components ωi and ω̃j in the

two charts, then
ω̃j = Ki

j ωi.

3. (Pairing is invariant.) The scalar ω(v) is coordinate-independent:

ω̃j ṽ
j = ωi v

i.

Proof (chain rule). For a smooth f , the directional derivative is v[f ] = vi ∂f
∂xi =

ṽj ∂f
∂x̃j . By the chain rule,

∂f

∂xi
=

∂x̃j

∂xi

∂f

∂x̃j
= J j

i
∂f

∂x̃j
. Comparing coefficients

gives ṽj = J j
iv

i. Define covectors by their action on vectors and require ω(v)

to be invariant in all charts: ωiv
i = ω̃j ṽ

j = ω̃jJ
j
iv

i for all v, so ωi = (J⊤)i
jω̃j,

i.e. ω̃j = (J−1)ijωi = Ki
jωi. The pairing invariance follows.

Example 2.3: Chart change and the meaning of vector components

Consider two coordinate systems on R3: the Cartesian coordinates (x, y, z)

and the spherical coordinates (r, θ, ϕ) related by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

A vector at a point p can be written either in the Cartesian basis

v = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
,

or in the spherical basis

v = vr
∂

∂r
+ vθ

∂

∂θ
+ vϕ

∂

∂ϕ
.
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Chapter 2 – Differential Forms

Applying the chain rule,

∂

∂r
= sin θ cosϕ

∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
,

and similarly for ∂
∂θ

and ∂
∂ϕ

. Thus, the components of the same geometric
vector in the two charts are related by the Jacobian:

vx

vy

vz

 =

sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0



vr

vθ

vϕ

 .

Although the numerical components change with coordinates, the geometric
vector v itself is the same object: a tangent direction at the point p.
Similarly, a covector (1-form)

ω = ωx dx+ ωy dy + ωz dz = ωr dr + ωθ dθ + ωϕ dϕ

transforms with the inverse Jacobian, so that the pairing ω(v) = ωiv
i is

invariant under the change of chart.
Changing coordinates only reshuffles the components. The physical or geomet-
ric quantity itself does not change.

Example 2.4: Cylindrical coordinates: chart change and volume, area
forms

Consider Cartesian (x, y, z) and cylindrical (ρ, ϕ, z) related by

x = ρ cosϕ, y = ρ sinϕ, z = z.

Vector components (contravariant). Write the same geometric vector v as

v = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
= vρ

∂

∂ρ
+ vϕ

∂

∂ϕ
+ vz

∂

∂z
.
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2.3 Charts and Vectors in Physics

Using the chain rule,
∂

∂ρ
= cosϕ

∂

∂x
+ sinϕ

∂

∂y
,

∂

∂ϕ
= −ρ sinϕ ∂

∂x
+ ρ cosϕ

∂

∂y
,

∂

∂z
=

∂

∂z
.

Hence 
vx

vy

vz

 =

cosϕ −ρ sinϕ 0

sinϕ ρ cosϕ 0

0 0 1


︸ ︷︷ ︸

Jacobian ∂(x,y,z)/∂(ρ,ϕ,z)


vρ

vϕ

vz

 .

Although the numbers change with the chart, the vector v itself does not.

Covector (1-form) components (covariant). Let

ω = ωx dx+ ωy dy + ωz dz = ωρ dρ+ ωϕ dϕ+ ω(cyl)
z dz.

First express differentials:

dρ = cosϕ dx+ sinϕ dy, dϕ =
− sinϕ

ρ
dx+

cosϕ

ρ
dy, dz = dz.

Comparing coefficients gives the inverse–Jacobian law

ωρ = cosϕωx + sinϕωy, ωϕ =
− sinϕ

ρ
ωx +

cosϕ

ρ
ωy, ω(cyl)

z = ωz,

so the pairing ω(v) is chart-invariant.

Volume and area forms. The standard volume form transforms by the
Jacobian determinant:

dV = dx ∧ dy ∧ dz = ρ dρ ∧ dϕ ∧ dz.

Typical oriented area elements:

plane z = const: dS = dx ∧ dy = ρ dρ ∧ dϕ,

cylinder ρ = R : dS = R dϕ ∧ dz (outward normal).

Physical takeaway. In cylindrical coordinates the ϕ-direction basis ∂
∂ϕ

has
length scale ρ, so components along ϕ naturally carry a factor ρ. This is a
chart effect, not a change of the underlying physical vector or 1-form.
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Chapter 2 – Differential Forms

Remark 2.4: Bases transform dually

Coordinate vector fields and 1-forms transform as(
∂

∂xi

)
p

= J j
i

(
∂

∂x̃j

)
p

, dx̃j
p = J j

i dx
i
p, dxi

p = Ki
j dx̃

j
p.

Thus components transform with J or K = J−1 so that the pairing dxi
(

∂
∂xj

)
=

δij stays intact.

Corollary 2.1: General tensor chart-change rule

A (k, ℓ)-tensor T has components T i1···ik
j1···jℓ in x-coords and T̃ a1···ak

b1···bℓ in
x̃-coords related by

T̃ a1···ak
b1···bℓ = Ja1

i1 · · · Jak
ik Kj1

b1 · · ·Kjℓ
bℓ T

i1···ik
j1···jℓ .

Contravariant indices pick up J ; covariant indices pick up K = J−1.

Proposition 2.1: Top-degree forms and Jacobians

For an n-form Ω in n dimensions,

Ω̃ = Ω̃1···n dx̃
1 ∧ · · · ∧ dx̃n = Ω1···n det(J) dx̃1 ∧ · · · ∧ dx̃n.

In particular, the standard volume form transforms by the determinant:

dx1 ∧ · · · ∧ dxn = det(K) dx̃1 ∧ · · · ∧ dx̃n =
1

det(J)
dx̃1 ∧ · · · ∧ dx̃n.

Example 2.5: Spherical coordinates and the volume, area elements

In R3, let x̃ = (r, θ, ϕ) with x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.
Compute J j

i = ∂x̃j/∂xi or equivalently K = ∂x/∂x̃ and get det(K) = r2 sin θ.
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2.3 Charts and Vectors in Physics

Hence, the Euclidean volume form becomes

dV = dx ∧ dy ∧ dz = r2 sin θ dr ∧ dθ ∧ dϕ.

Restricting to the sphere r = R gives the area 2-form

dSS2 = R2 sin θ dθ ∧ dϕ,

which matches the familiar surface element from vector calculus.

A passive change of chart re-expresses the same geometric vector with new com-
ponents (via J and K). An active transformation would move the vector or point
itself. In this section, we only used the passive, coordinate-change picture—exactly
what ensures that physical laws (equations between tensors) are form-invariant in
any coordinates.

In summary,

• Vectors: ṽ = J v (contravariant).

• Covectors: ω̃ = K⊤ω or ω̃j = Ki
jωi (covariant).

• Pairing invariant: ω(v) unchanged.

• n-forms or volume: pick up det of the Jacobian of the coordinate map.

• Tensors (k, ℓ): each upper index gets a J , each lower index a K = J−1.

Definition 2.5: Vectors as coordinate-independent objects

At each point p ∈M , a tangent vector v ∈ TpM acts as a directional derivative:

v[f ] =
∑
i

vi
∂f

∂xi
.
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Chapter 2 – Differential Forms

If we change coordinates from xi to x̃j = x̃j(x), the components transform as

ṽj =
∑
i

∂x̃j

∂xi
vi.

Thus, v is the same geometric entity even though its components change.

In physics, a vector quantity such as velocity or force is often visualized as an
arrow in space. Mathematically, it is a coordinate-independent object living in the
tangent space TpM . The components (vx, vy, vz) depend on the chosen coordinates,
but the vector itself does not.

This explains why physical laws written in vector form (e.g. F = ma, Maxwell’s
equations) must hold in all coordinate systems: they are statements about geometric
objects, not about their components.

Example 2.6: Change of coordinates and physical vectors

Suppose a particle moves on a sphere of radius R. In Cartesian coordinates
(x, y, z) its velocity vector has components (ẋ, ẏ, ż). In spherical coordinates
(θ, ϕ), the same velocity is expressed as

v = R θ̇
∂

∂xθ
+R sin θ ϕ̇

∂

∂xϕ
.

The change of components reflects only the change of chart, not a change in
the physical velocity.

Remark 2.5: Covectors and coordinate transformations

Similarly, 1-forms transform with the inverse Jacobian:

ω̃j =
∑
i

∂xi

∂x̃j
ωi.

This dual behavior ensures that the pairing ω(v) =
∑

i ωiv
i is invariant under
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2.4 Vector fields

coordinate changes.

2.4 Vector fields

Definition 2.6: Vector field (physics-friendly definition)

A vector field on a smooth space M assigns to each point p ∈M a tangent
vector V (p) ∈ TpM , smoothly depending on p. Equivalently, a vector field is a
derivation on smooth functions:

V : C∞(M)→ C∞(M), V [f ](p) = V (p)[f ],

linear over R and satisfying the Leibniz rule V [fg] = f V [g] + g V [f ].

In local coordinates (x1, . . . , xn) on an open set U ⊆M , a vector field reads

V =
n∑

i=1

V i(x)
∂

∂xi
, x ∈ U,

where the component functions V i are smooth (C∞). Under a chart change
x 7→ x̃(x) with Jacobian J j

i = ∂x̃j/∂xi, components transform contravariantly:

Ṽ j(x̃) = J j
i(x)V

i(x).

Thus, V is a coordinate-independent geometric object, even though its components
change.

Remark 2.6

Some physics textbooks use this coordinate-independent geometric property
to define what vectors are. But in a more modern viewpoint, this is only a
result of a change in the chart.
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Chapter 2 – Differential Forms

Example 2.7: Basic examples in R3

• Uniform field: V = a ∂
∂x

+ b ∂
∂y

+ c ∂
∂z

with constants a, b, c.

• Rotation about the z-axis: V = −y ∂
∂x

+ x ∂
∂y

(generates planar
rotations).

• Radial field: V = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

(points outward, scales with
radius).

Example 2.8: Cylindrical coordinates (ρ, ϕ, z)

With x = ρ cosϕ, y = ρ sinϕ, z = z, the coordinate vector fields are

∂

∂ρ
= cosϕ

∂

∂x
+ sinϕ

∂

∂y
,

∂

∂ϕ
= −ρ sinϕ ∂

∂x
+ ρ cosϕ

∂

∂y
,

∂

∂z
=

∂

∂z
.

Hence the same vector field may be written

V = V ρ ∂

∂ρ
+ V ϕ ∂

∂ϕ
+ V z ∂

∂z
= V x ∂

∂x
+ V y ∂

∂y
+ V z ∂

∂z
,

with components related byV x

V y

V z

 =

cosϕ −ρ sinϕ 0

sinϕ ρ cosϕ 0

0 0 1


V ρ

V ϕ

V z

 .

The ϕ-component carries a factor ρ because the basis vector ∂/∂ϕ has length
scale ρ.

Remark 2.7: Action on functions and gradient pairing

Given a scalar field f ∈ C∞(M) and a vector field V , the directional derivative
along V is the new scalar field V [f ]. If df denotes the 1-form (covector field)

14



2.5 From vectors to covectors

differential of f , then

V [f ] = ⟨df, V ⟩ =
∑
i

∂f

∂xi
V i

in any coordinates. This pairing is coordinate-invariant.

Definition 2.7: Integral curves and flow (brief)

An integral curve of V is a curve γ(t) satisfying γ̇(t) = V (γ(t)) with initial
condition γ(0) = p. Locally (under mild conditions) there exists a flow Φt

generated by V such that

d

dt
Φt(p) = V (Φt(p)) and Φ0 = id.

Physically, V may represent a velocity field and Φt the motion of tracers.

Example 2.9: Physics meanings

• Velocity field v(x) in fluid flow: the integral curves are particle paths.

• Force field F(x) for a charged particle (with given dynamics): in-
tegral curves approximate trajectories in configuration space when
reparametrized appropriately.

• Angular velocity field for a rigid rotation: V = ω × r.

2.5 From vectors to covectors

Physics frequently identifies gradients with vectors through the Euclidean dot
product, but in differential geometry the primary object is the differential of a
function.

15



Chapter 2 – Differential Forms

Definition 2.8: Differential of a function

For a smooth f : Rn → R and p ∈ Rn, the differential dfp ∈ T ∗
pRn is the

linear map

dfp(v) := v[f ] =
n∑

i=1

vi
∂f

∂xi
, v =

∑
i

vi
(

∂

∂xi

)
p

.

In coordinates, df =
∑

i
∂f
∂xi dx

i.

Remark 2.8: Gradient and differential

Given an inner product (metric) g on TpRn, the musical isomorphism v 7→ v♭

sends a vector to a covector via v♭(·) = g(v, ·). The gradient ∇f is the unique
vector with g(∇f, ·) = df(·), i.e., df = (∇f)♭. In Euclidean space with the
standard dot product, this reduces to the familiar identification df = ∇f · dx.

Example 2.10: Linear function

Let f(x) = a1x
1+ · · ·+anx

n. Then df =
∑

i ai dx
i. For any v =

∑
i v

i(∂/∂xi),
we have df(v) =

∑
i aiv

i.

Example 2.11

Show that d(fg) = f dg+g df and d(ϕ ◦ f) = ϕ′(f) df for smooth f, g : Rn →
R and ϕ : R→ R.

2.5.1 Application: work form F · dx

In vector calculus, the work along a curve γ : [a, b] → Rn under a force field
F : Rn → Rn is

W =

ˆ
γ

F · dx :=

ˆ b

a

F (γ(t)) · γ̇(t) dt.

16



2.5 From vectors to covectors

Define the associated 1-form (the work form)

ω := F · dx =
n∑

i=1

Fi(x) dx
i.

Then the line integral is simply the integral of the 1-form ω along γ

W =

ˆ
γ

ω.

Example 2.12: Circulation around a circle in R2

Let F (x, y) = (−y, x) on R2. Then

ω = F · dx = −y dx+ x dy.

Take the unit circle γ(t) = (cos t, sin t), t ∈ [0, 2π]. Compute
ˆ
γ

ω =

ˆ 2π

0

(
− sin t (− sin t) + cos t (cos t)

)
dt (2.1)

=

ˆ 2π

0

(sin2 t+ cos2 t) dt = 2π. (2.2)

Remark 2.9: Closed and exact (preview)

Write ω = −y dx + x dy. In R2, the exterior derivative of a 1-form ω =

P dx+Q dy is

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Here dω = (1− (−1)) dx∧dy = 2dx∧dy ≠ 0, so ω is not closed and hence not
exact; accordingly, its integral around a loop can be nonzero. This foreshadows
Stokes’ theorem.
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Chapter 2 – Differential Forms

Example 2.13: Conservative field

Let F = ∇ϕ for a smooth potential ϕ : Rn → R. Then ω = F · dx = dϕ is
exact. For any curve γ,

ˆ
γ

ω =

ˆ
γ

dϕ = ϕ(γ(b))− ϕ(γ(a)),

so the work depends only on endpoints.

Example 2.14: Work in 3D and curl

Let F (x, y, z) =
(
y,−x, 0

)
on R3 and ω = F · dx.

(a) Compute ∇× F and verify that dω corresponds to ∇× F via the usual
identification between 2-forms and pseudovectors in R3.

(b) Evaluate
˛
γ

ω around the unit circle in the xy-plane and relate it to
˜

S
dω over the unit disk using Stokes’ theorem.

2.6 Higher-degree forms

Definition 2.9: k-forms

A k-form on Rn is a smooth, multilinear, antisymmetric map

ωp : (TpRn)k −→ R

that assigns a real number to each ordered k-tuple of tangent vectors at p. In
coordinates, any k-form can be expressed as a linear combination of wedge
products of the coordinate 1-forms:

ω =
∑

1≤i1<···<ik≤n

ωi1···ik(x) dx
i1 ∧ · · · ∧ dxik ,
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2.6 Higher-degree forms

where the coefficients ωi1···ik(x) are smooth functions.

Remark 2.10: Wedge product

Given a p-form α and a q-form β, their wedge product α∧β is a (p+ q)-form
defined by

(α∧β)(v1, . . . , vp+q) =
1

p! q!

∑
σ∈Sp+q

sgn(σ)α(vσ(1), . . . , vσ(p)) β(vσ(p+1), . . . , vσ(p+q)).

It is bilinear and graded-antisymmetric:

α ∧ β = (−1)pq β ∧ α.

Example 2.15: Area 2-form in R3

n R3, the basic 2-forms are dx ∧ dy, dy ∧ dz, and dz ∧ dx. A general 2-form is

ω = P dy ∧ dz +Q dz ∧ dx+R dx ∧ dy,

where (P,Q,R) are smooth functions. The correspondence with a pseudovector
F = (P,Q,R) is what allows us to identify dω with ∇ · F later.

Example 2.16: Volume form

In R3, the standard volume form is

dV = dx ∧ dy ∧ dz.

For three vectors v1, v2, v3 ∈ TpR3,

dV (v1, v2, v3) = det[v1 v2 v3],

which gives the oriented volume of the parallelepiped they span. In Rn, the
corresponding form is dV = dx1 ∧ dx2 ∧ · · · ∧ dxn.
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Chapter 2 – Differential Forms

Remark 2.11: Interpretation

• 1-forms ←→ line elements, integrated along curves.

• 2-forms ←→ oriented area elements, integrated over surfaces.

• 3-forms ←→ volume elements, integrated over regions.

The exterior derivative d connects them:

0-forms (functions) d−−→ 1-forms d−−→ 2-forms d−−→ 3-forms, d2 = 0.

This hierarchy underlies the integral theorems of vector calculus.

2.7 Exterior Derivative and Vector Calculus

Definition 2.10: Exterior derivative

The exterior derivative d is an operator that maps k-forms to (k + 1)-forms,

d : Ωk(Rn)→ Ωk+1(Rn),

characterized by the following properties:

1. For a function (0-form) f , df =
∑

i

∂f

∂xi
dxi.

2. For general ω and η,

d(ω ∧ η) = dω ∧ η + (−1)k ω ∧ dη,

if ω is a k-form.

3. d(dω) = 0 for all ω (that is, d2 = 0).
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2.7 Exterior Derivative and Vector Calculus

Example 2.17: Computation in coordinates

Let ω =
∑

i fi dx
i be a 1-form. Then

dω =
∑
i<j

(
∂fj
∂xi
− ∂fi

∂xj

)
dxi ∧ dxj.

Similarly, for a 2-form ω =
∑

i<j fij dx
i ∧ dxj,

dω =
∑
i<j<k

(
∂fjk
∂xi

+
∂fki
∂xj

+
∂fij
∂xk

)
dxi ∧ dxj ∧ dxk.

One of the main advantages of differential forms is that the familiar vector calculus
operators ∇, ∇×, ∇· can all be unified through the differential forms. This is
the theoretical foundation of the modern viewpoint of vector analysis. We first
take a glance at these three operators in differential forms.

• Gradient as a 1-form. Let f be a scalar function (a 0-form). Its exterior
derivative is

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

This is exactly the gradient of f , but expressed as a covector (1-form).

• Curl as the derivative of a 1-form. Let A = Axdx+ Aydy + Azdz be a
1-form. Then

dA =

(
∂Az

∂y
− ∂Ay

∂z

)
dy ∧ dz

+

(
∂Ax

∂z
− ∂Az

∂x

)
dz ∧ dx

+

(
∂Ay

∂x
− ∂Ax

∂y

)
dx ∧ dy.

This 2-form encodes the curl of A. Under the identification between 2-forms
and pseudovectors in R3, this is precisely ∇×A.
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Chapter 2 – Differential Forms

• Divergence as the derivative of a 2-form. Let B = Bx dy ∧ dz +By dz ∧
dx+Bz dx ∧ dy be a 2-form. Then

dB =

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
dx ∧ dy ∧ dz.

This is a 3-form representing the divergence ∇ ·B.

Actually, we can identify these three differential form through some vector identities
that we are familiar with:

Gradient:
ˆ b

a

df =

ˆ b

a

∇f · dr = f(b)− f(a),

Curl:
˛
∂S

A · dl =
¨

S

∇×A · dS =

¨
S

dA,

Divergence:
‹

∂V

B · dS =

˚
V

∇ ·BdV =

˚
V

dB.

Remark 2.12: Geometric meaning

The exterior derivative measures the “infinitesimal circulation” or “flux density”
of a form. It generalizes the gradient, curl, and divergence:

0-form: f
d−→ ∇f · dr,

1-form: A · dr d−→ (∇×A) · (dS),

2-form: B · (dS) d−→ (∇ ·B) dV.

Here dS represents the oriented surface element (a 2-form), and dV the volume
form (a 3-form).

Example 2.18: Recovering familiar vector identities in R3

• If ω = df (a 1-form), then dω = d(df) = 0 corresponds to ∇× (∇f) = 0.

• If ω = F · dx (a 1-form), then dω corresponds to ∇× F .
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2.7 Exterior Derivative and Vector Calculus

• If ω = F · (dS) (a 2-form), then dω corresponds to ∇ · F .

Thus, the identity d2 = 0 encodes the classical vector calculus results:

∇× (∇f) = 0, ∇ · (∇× F ) = 0.

Definition 2.11: Closed and exact forms

A form ω is called closed if dω = 0, and exact if there exists another form η

such that ω = dη. Since d2 = 0, every exact form is automatically closed, but
not every closed form is exact. This subtlety lies at the heart of topology (de
Rham cohomology) and thermodynamics in physics.

Theorem 2.2: Exterior derivative and vector calculus in R3

Let U ⊂ R3 be an open set. Then the sequence of exterior derivatives

Ω0(U)
d−−−−→ Ω1(U)

d−−−−→ Ω2(U)
d−−−−→ Ω3(U)

corresponds to the sequence of vector calculus operators

C∞(U)
∇−−−−→ X(U)

∇×−−−−−→ X(U)
∇·−−−−−→ C∞(U),

where

• Ωk(U) is the space of smooth differential k-forms on U ,

• C∞(U) is the space of smooth functions on U ,

• X(U) is the space of smooth vector fields on U .

More explicitly, we write

0-form f
d−−−−→ df ←→ ∇f,

1-form A
d−−−−→ dA ←→ ∇×A,

2-form B
d−−−−→ dB ←→ ∇ ·B.
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Chapter 2 – Differential Forms

Corollary 2.2

The property d2 = 0 encodes familiar vector calculus identities:

∇× (∇f) = 0, ∇ · (∇×A) = 0.

Remark 2.13: Geometric meaning of k-forms

A differential k-form assigns an oriented density to a k-dimensional object:

• 0-form: scalar field (value at each point).

• 1-form: oriented line density (acts on tangent vectors).

• 2-form: oriented surface density (acts on pairs of tangent vectors).

• 3-form: oriented volume density.

Each form type naturally integrates over an object of matching dimension.

Example 2.19: 1-forms as line densities

A 1-form ω = P dx+Q dy in R2 assigns to a vector v = (vx, vy) the number
ω(v) = P vx + Qvy. This represents the infinitesimal work done by a field
F = (P,Q) on a displacement dx = v dt. Thus, integrating ω along a curve
measures total work.

Example 2.20: 2-forms as flux densities

A 2-form ω = R dy ∧ dz + S dz ∧ dx+ T dx ∧ dy in R3 naturally corresponds
to a vector field F = (R,S, T ). If v1, v2 span a surface patch, then

ω(v1, v2) = F · (v1 × v2)

is the oriented flux through that infinitesimal patch. Hence
ˆ
S

ω gives the

total flux of F through S.
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2.7 Exterior Derivative and Vector Calculus

Example 2.21: 3-forms as volume densities

3-form such as ω = f(x, y, z) dx ∧ dy ∧ dz represents a scalar density that
integrates to a volume or total quantity:

ˆ
V

f(x, y, z) dx dy dz.

For instance, if f is a mass density, this gives the total mass.

Remark 2.14: The operator d as “boundary detector”

The exterior derivative d measures how a k-form changes across space, capturing
oriented “flow through the boundary.”

• d of a 0-form (a scalar field) gives its gradient.

• d of a 1-form measures rotational tendency (curl).

• d of a 2-form measures expansion (divergence).

Thus, d transforms local infinitesimal data into the boundary behavior that
Stokes’ theorem then integrates globally.

x

y

v
γ(t) F

Integrate ω = F · dx along γ

Thus, the operators gradient, curl, and divergence are unified into a single operation:
the exterior derivative d.
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Chapter 2 – Differential Forms

Remark 2.15: Unified picture

The hierarchy of forms and d can be summarized as:

f
d−−→ ∇f · dx d−−→ (∇×A) · (dS) d−−→ (∇·B) dV

0-form 1-form 2-form 3-form

and the corresponding integral theorems:

Line:
ˆ b

a

df = f(b)− f(a), (Fundamental theorem)

Surface:
˛
∂S

ω =

¨
S

dω, (Stokes’ theorem)

Volume:
¨

∂V

ω =

˚
V

dω, (Divergence theorem).

All are manifestations of the single geometric identity
ˆ
∂M

ω =

ˆ
M

dω.
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3

Integration of Differential Forms

After discussing how useful the differential forms are in vector analysis, we move
to another important application of differential forms— integration.

3.1 Orientation and integration domains

In physics, integrals of vector fields often measure flow or circulation. For
instance, the flux of a magnetic field through a loop or the total current through a
surface both depend not only on the magnitude of the field but also on the chosen
direction of measurement. To define such quantities consistently, we must specify
what “positive direction” means on a curve, surface, or volume. This leads naturally
to the notion of orientation.

Definition 3.1: Orientation

An orientation on a k-dimensional manifold M is a consistent choice of which
ordered bases of TpM are “positive” at every point. For example:

• In R, the direction of increasing x defines the positive orientation.

• In R2, the orientation of (∂/∂x, ∂/∂y) defines the standard counterclock-
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Chapter 3 – Integration of Differential Forms

wise sense.

• In R3, (∂/∂x, ∂/∂y, ∂/∂z) gives the standard right-handed orientation.

Remark 3.1: Why orientation matters

Changing orientation multiplies all integrals of top-degree forms by −1. A
k-form can be integrated over a k-dimensional oriented manifold only when
the orientation of the domain and of the form agree.

3.2 Integration via pullback

Having established the role of orientation, the next step is to formalize how to
compute these oriented integrals. Physically, this corresponds to expressing a
curved wire, surface, or volume using local coordinates — just as one parametrizes
a membrane by (u, v) to compute its flux. Mathematically, this change of variables
is encoded by the pullback of differential forms.

Definition 3.2: Pullback of a form

Let Φ : U ⊂ Rk → Rn be a smooth map and let ω be a k-form on Rn. The
pullback Φ∗ω is the k-form on U defined by

(Φ∗ω)u(v1, . . . , vk) = ωΦ(u)

(
(DΦ)u(v1), . . . , (DΦ)u(vk)

)
.

In coordinates, if ω =
∑

i1<···<ik
ωi1···ik(x) dx

i1 ∧ · · · ∧ dxik , then

Φ∗ω =
∑

i1<···<ik

ωi1···ik(Φ(u)) d
(
Φi1

)
∧ · · · ∧ d

(
Φik

)
.
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3.2 Integration via pullback

Definition 3.3: Integral of a k-form

Let M be an oriented k-dimensional manifold parametrized by Φ : U ⊂ Rk →
M . If ω is a k-form on M , its integral over M is defined by

ˆ
M

ω =

ˆ
U

Φ∗ω.

Example 3.1: Line integral of a 1-form

Let ω = F · dx be a 1-form on Rn, and let γ : [a, b]→ Rn be a curve. Then
ˆ
γ

ω =

ˆ b

a

γ∗ω =

ˆ b

a

F (γ(t)) · γ̇(t) dt,

which is the familiar line integral from vector calculus.

Example 3.2: Surface integral of a 2-form

Let S ⊂ R3 be a surface parametrized by Φ(u, v) and let

ω = P dy ∧ dz +Q dz ∧ dx+R dx ∧ dy.

Then
Φ∗ω = (P,Q,R) ·

(
∂Φ

∂u
× ∂Φ

∂v

)
du ∧ dv,

so that ˆ
S

ω =

¨
U

(P,Q,R) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
du dv.

This is exactly the oriented flux of the vector field (P,Q,R) through S.

Example 3.3: Volume integral of a 3-form

For a 3-form ω = f(x, y, z) dx ∧ dy ∧ dz and a region V ⊂ R3,ˆ
V

ω =

˚
V

f(x, y, z) dx dy dz.
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Chapter 3 – Integration of Differential Forms

Remark 3.2: Orientation reversal

If Φ reverses orientation (for instance, swapping two coordinates), then Φ∗ω

picks up a negative sign, hence
ˆ
M

ω = −
ˆ
M

(−ω).

This ensures that Stokes’ theorem holds consistently under orientation change.

These examples show that integrating forms reproduces all familiar integrals in
vector calculus. But the real power of differential forms emerges when we observe
that all these separate theorems — for work, flux, and divergence — share one
common geometric structure. This leads to the generalized Stokes’ theorem,
which unifies them under a single principle of conservation.

3.3 Stokes’ theorem revisited

Theorem 3.1: General Stokes theorem

et M be an oriented k-dimensional manifold with boundary ∂M , and ω a
(k − 1)-form on M . Then ˆ

∂M

ω =

ˆ
M

dω.

Example 3.4: Unifying all classical theorems

• For k = 1 (intervals in R): Fundamental theorem of calculus.

• For k = 2 (surfaces in R3): Stokes’ theorem for curl.

• For k = 3 (volumes in R3): Divergence theorem.

All are instances of
´
∂M

ω =
´
M
dω.
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3.3 Stokes’ theorem revisited

Example 3.5: Curl and flux

Let ω = F · dx with F (x, y, z) = (y,−x, 0) on R3. Then

dω = (∇× F ) · (dS) = (0, 0,−2) · (dS) = −2 dx ∧ dy.

Consider M to be the unit disk x2 + y2 ≤ 1 in the xy-plane. Then ∂M is the
unit circle, oriented counterclockwise. By Stokes’ theorem:

˛
∂M

ω =

ˆ
M

dω =

¨
x2+y2≤1

(−2) dx dy = −2π.

If the boundary orientation were reversed (clockwise), the result would be
+2π.

Remark 3.3: Geometric unification

Differential forms and the exterior derivative provide a single, coordinate-free
language for all integral theorems of vector calculus:

• line, surface, and volume integrals are just integrations of forms

• gradient, curl, and divergence are all special cases of exterior derivatives.

This unification is one of the key insights that make differential geometry so
powerful in physics.

Remark 3.4: Physical interpretation of Stokes’ theorem

In every domain of physics, Stokes’ theorem expresses a conservation law:

“flux through the boundary” = “accumulation inside”.

For instance:

• Faraday’s law:
˛
∂S

E · dx = − d

dt

¨
S

B · dS, linking electric circulation

to changing magnetic flux;
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Chapter 3 – Integration of Differential Forms

• Gauss’s law:
¨

∂V

E · dS = 4πQinside;

• Fluid continuity:
ˆ
∂V

ρv · dS =

ˆ
V

∇ · (ρv) dV .

Each of these is simply an instance of
´
∂M

ω =
´
M
dω, showing that differential

forms capture the geometric heart of physical laws.
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4

Applications in Physics

4.1 Electromagnetism in differential forms

Remark 4.1: Motivation

Maxwell’s equations take their most elegant and compact form when written in
the language of differential forms. The entire set of four equations in vacuum
can be expressed as two differential-form equations:

dF = 0, d ⋆ F = J.

In spacetime with coordinates (t, x, y, z), define the field strength 2-form

F =Ex dx ∧ dt+ Ey dy ∧ dt+ Ez dz ∧ dt

+Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy.

The electric field components appear with dt, and the magnetic field components
appear as spatial area elements. This unifies E and B into one geometric object.
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Chapter 4 – Applications in Physics

Applying dF = 0 gives the two homogeneous Maxwell equations:∇ ·B = 0,

∇× E+ ∂tB = 0.

The first expresses the nonexistence of magnetic monopoles; the second expresses
Faraday’s law of induction.

The dual form ⋆F (using the Hodge star in Minkowski space) is a 2-form that
contains the fields (B,E) in reversed roles. The second Maxwell equation,

d ⋆ F = J,

expresses both Gauss’s and Ampère–Maxwell laws:∇ · E = ρ,

∇×B− ∂tE = J.

Here J is the current 3-form,

J =ρ dx ∧ dy ∧ dz − Jx dy ∧ dz ∧ dt

− Jy dz ∧ dx ∧ dt− Jz dx ∧ dy ∧ dt.

Remark 4.2: Charge conservation

Applying d to both sides of d ⋆ F = J gives dJ = 0 (because d2 = 0), which is
precisely the local continuity equation

∂ρ

∂t
+∇ · J = 0.

Thus charge conservation is a geometric identity rather than a separate law.
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4.2 Fluid flow and vorticity forms

Remark 4.3: Lorentz invariance and compactness

In differential-form language, Maxwell’s equations are manifestly Lorentz
invariant and coordinate-free. The electromagnetic field is encoded in a single
2-form F , and its dynamics follow from dF = 0 and d ⋆ F = J—a dramatic
simplification from four vector equations.

4.2 Fluid flow and vorticity forms

Definition 4.1: Velocity field and vorticity 2-form

Let v(x) be a smooth velocity field in R3. The associated 1-form is v♭ =

vx dx+ vy dy + vz dz. Its exterior derivative,

ω = dv♭ = (∇× v)x dy ∧ dz + (∇× v)y dz ∧ dx+ (∇× v)z dx ∧ dy,

is the vorticity 2-form.

This form measures the infinitesimal rotation of the fluid. Integrating ω over a
surface gives the total circulation through that surface.

Example 4.1: Kelvin’s circulation theorem

n an ideal incompressible fluid, if the flow is governed by an exact form ω = dv♭

with dω = 0, then the circulation
˛
∂S

v♭ =

¨
S

ω

is conserved as the surface moves with the fluid.
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Chapter 4 – Applications in Physics

Remark 4.4: Analogy to electromagnetism

The mathematical structure of fluid vorticity parallels that of the magnetic
field:

Electromagnetism Fluid flow
1-form: A 1-form: v♭

2-form: F = dA 2-form: ω = dv♭

Flux conservation: dF = 0 Vorticity conservation: dω = 0

This correspondence helps physicists see field theory and fluid dynamics as
instances of the same geometric framework.

4.3 Conservation laws as closed forms

Definition 4.2: Conserved current

A current k-form J satisfies dJ = 0. If M is a (k + 1)-dimensional region
with boundary ∂M , Stokes’ theorem implies

ˆ
∂M

J =

ˆ
M

dJ = 0.

Thus, the total flux of J through the boundary vanishes— the geometric
expression of a conservation law.

Example 4.2: Charge conservation revisited

In electrodynamics, J is the charge–current 3-form. Because dJ = 0, the
total charge in any region changes only by the amount of current crossing its
boundary:

d

dt

ˆ
V

ρ dV = −
¨

∂V

J · dS.
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4.3 Conservation laws as closed forms

Remark 4.5: Unified perspective

Differential forms provide a natural framework for modern physics:

• Classical mechanics: Work 1-form F · dx, symplectic 2-form in phase
space.

• Electromagnetism: Field strength 2-form F and its dual ∗F .

• Fluid mechanics: Vorticity 2-form dv♭.

• Relativity and field theory: Conservation currents as closed forms
dJ = 0.

Each fundamental conservation law is simply the statement that a certain
differential form is closed.
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